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Abstract

We consider the Bayesian ranking and selection problem, in which one wishes to
allocate an information collection budget as efficiently as possible to choose the best
among several alternatives. In this problem, the marginal value of information is
not concave, leading to algorithmic difficulties and apparent paradoxes. Among these
paradoxes is that when there are many identical alternatives, it is often better to ignore
some completely and focus on a smaller number than it is to spread the measurement
budget equally across all the alternatives. We analyze the consequences of this non-
concavity in several classes of ranking and selection problems, showing that the value
of information is “eventually concave,” i.e., concave when the number of measurements
of each alternative is large enough. We also present a new fully sequential measurement
strategy that addresses the challenge that non-concavity it presents.

1 Introduction

Often in business we must choose from a set of alternatives whose values are uncertain. We

typically have the ability to learn more about each alternative, but are constrained by time

and financial budgets. A natural desire is to allocate our learning budget across the potential

decisions to most improve our chances of making a good final decision.

Some examples of these decisions include:

• We would like to find the best supplier for a component part. We know the price of

the component, but we do not know the reliability of the service or the quality of the

product. We can collect information on service and product quality by placing small

orders.
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• We need to identify the best set of features to include in a new laptop we are man-

ufacturing. We can estimate market response by running market tests, but these are

time consuming and delay the product launch.

• We need to identify the best advertising message to maximize the number of clicks on

a website. We can run market tests to evaluate the effectiveness of different messages.

• A charter jet operator has developed a simulator to predict the performance of a

particular mix of aircraft types. The simulator takes a day to run, and we need to find

the best mix of aircraft types.

• A firm must decide in which of several mutually exclusive projects they should invest.

Before making the investment, analysts at the firm can research potential returns from

some of the projects, but the number of analysts at the firm are limited. How should

the firm allocate its analysis effort?

These are each instances of the ranking and selection (R&S) problem, which can be phrased

more generally as follows. We start with a distribution of belief about each alternative from

which we must choose. We then collect information about particular alternatives to improve

our knowledge of them. As we collect more information, our knowledge of an alternative

improves, often sharpening our ability to make the best choice.

Now imagine, as is typically the case, that we have a budget for collecting information.

To illustrate, consider the capital investment example where we must decide in which of 50

projects to invest. Assume we have 10 analysts. If each analyst examines 5 projects, then

the quality of each analysis will be quite low, and will be of little value for making decisions.

If instead we focus the firm’s analysis effort on only 10 projects, then the quality of each

analysis will be quite high, offering sufficient precision to choose the best, but only among

the 10 projects studied.

The problem of too many choices has received recognition. In “The Paradox of Choice:

Why More is Less” (Schwartz (2004)), numerous examples of consumers facing too many

choices are provided, but without any formal analysis of the implications. The allocation of

limited resources to collect information depends on the nature of competing alternatives, our
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confidence in our initial estimates, and the quality of the information that we can collect.

Intuition suggests that the value of information should be concave in the amount of informa-

tion collected – as we collect more information it is natural to expect that the marginal value

of this information should decrease. In fact, this is not true. In this paper, we investigate

the factors that impact the marginal value of information, and show that since the value

of information can be non-concave, we may need to restrict the number of alternatives we

consider when trying to identify the best.

The value of information has a long history spanning the literatures of several disci-

plines. Within the economics literature, the influential work Stigler (1961) considers the

value of information in the problem faced by buyers searching for the best price. The semi-

nal work Howard (1966) formulates the value of information in a decision-theoretic context,

and spawned a great deal of work in this area both within the decision-theoretic and opera-

tions research communities and beyond, including medical decision-making (see Yokota and

Thompson (2004) for a recent review) and computer science (see, e.g., Kaelbling et al. (1998)

for its use in reinforcement learning). The classic text Raiffa and Schlaifer (1968) poses the

Bayesian R&S problem and defines the associated value of information, which marked the

beginning of a number of research articles treating the value of information within Bayesian

R&S, including Guttman and Tiao (1964); Tiao and Afonja (1976); Berger and Deely (1988).

This work continues in the simulation optimization community, and also within computer

science where it is known as the budgeted learning problem (Lizotte et al., 2003; Kapoor

and Greiner, 2005; Guha and Munagala, 2007; Goel et al., 2008).

Within simulation-optimization, the R&S problem appears when allocating a computing

budget to determine the set of parameters that produces the best results in a simulation.

Chen (1995) introduces Optimal Computing Budget Allocation (OCBA) as a solution to

this problem, which is studied in a series of articles (Chen et al. (1996, 1997, 2000a) and

Chen et al. (2000b)). Other algorithmic solutions include LL(S) (Chick and Inoue (2001)),

LL(1) (Chick et al., 2007, 2010) and the knowledge gradient (Frazier et al., 2008). Although

this line of research proposes algorithms for the collection of information, some of which are

based upon the marginal value of information, it does not formally investigate the underlying
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structure of this marginal value.

The R&S problem is related to the problem of purchasing information for portfolio selec-

tion. Portfolio selection has been studied widely, and the more specialized topic of informa-

tion and its value in this context has received relatively less but still substantial attention

within decision analysis. In portfolio selection, we allocate a capital budget across a col-

lection of projects with the goal of maximizing the value of the projects chone. In many

cases, we may purchase information about each project’s potential return that will allow

us to better allocate our capital. Mehrez and Stulman (1984) gives a formal statement of

one version of this problem, which is expanded and generalized in Mehrez and Sethi (1989).

Keisler (2004) presents a simulation study and argues that the value of obtaining perfect

information about every project is not much larger than simply using prior information in

an intelligent way. Bickel et al. (2008) study the value of seismic information for selecting a

portfolio of oil or gas wells to be drilled, building on a substantial body of research studying

the vaule of information for oil and gas development (see Bratvold et al. (2007) for a survey).

The structure of the value of information, and in particular its lack of concavity, has been

explored in many information collection problems other than R&S. Howard (1966) describes

an auction problem in which the value of perfect information may be superadditive, i.e., the

value of acquiring two different pieces of information together may be greater than the sum

of the values of acquiring each one individually. Radner and Stiglitz (1984) show general

conditions under which the value of sampling is not concave. Chade and Schlee (2002)

and De Lara and Gilotte (2007) extend these results to more general settings. In a project

selection problem, Samson et al. (1989) show that the value of information is not additive.

Moscarini and Smith (2002) give asymptotic conditions under which the value of information

is concave in a finite-state setting with a single information source. In a modified version

of the R&S problem, Weibull et al. (2007) demonstrate that non-concavities in the value of

information can lead to paradoxical discontinuities in optimal behavior, and Mattsson et al.

(2004) describe in an unpublished working paper a case where it may be better to select

an alternative that appears to be worse. Bickel and Smith (2006) demonstrate, using the

setting of oil exploration (as a form of information collection) that information collection
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can exhibit increasing marginal returns, but do not address the more general problem of

allocating resources for information collection.

We use the R&S framework with a single-stage of normal samples of known variance to

study the structure of the marginal value of information and to characterize its concavity.

While there are cases in which the value of information is not concave, we show that there

exist thresholds such that the value of information is concave when the number of mea-

surements of each alternative exceeds the corresponding threshold. We call this property

“eventual concavity,” and it may be understood as implying that the value of information

is concave as long as the number of measurements is large enough. In the special case of

measuring a single alternative, we give an explicit expression for the region on which the

value of information is concave.

While this eventual concavity result demonstrates that lack of concavity occurs in a re-

stricted set of situations, it is nevertheless important in some cases. We illustrate some para-

doxes that result from the non-concavity, including the possible non-optimality of spreading

the measurement budget equally among the alternatives when the prior is symmetric. It

may be better to completely ignore some alternatives (chosen completely at random) and

to allocate the remaining budget among those that remain. While paradoxes resulting from

the lack of concavity in the value of information in other problems have been described in

the literature, the strange behaviors resulting from this lack of concavity in R&S have not

been fully explored elsewhere.

We also consider sequential measurement policies, where the non-concavity of information

can cause difficulties for algorithms that allocate one or a small number of measurements

at a time based on value of information calculations. Such difficulties with myopic poli-

cies have been noted and explored in the AI community. Heckerman et al. (1993) propose

valuing batches (sets) of measurements instead of individual measurements, and provides

an asymptotic approximation based on the central limit theorem for doing so. Bilgic and

Getoor (2007) present a data structure for efficient computation of the value of acquiring

sets of features in a cost-sensitive classification problem, and present algorithms using these

values that outperform a myopic policy. Krause and Guestrin (2005) provide algorithms

5



and hardness results for computing optimal batches of measurements and optimal sequential

policies. Tolpin and Shimony (2009) provide a pathological example in which the myopic

policy performs poorly.

We describe a policy, called KG(*), for overcoming the complications introduced by

non-concavity in the value of information. This policy is related to the Blinkered Value of

Information, which was introduced in Tolpin and Shimony (2009) to address similar concerns

about myopic value of information calculations. KG(*) was introduced in Chick and Frazier

(2009a,b) as part of a larger numerical study, where it was described only very briefly. We

provide a more complete description.

We start by describing the Bayesian R&S problem formally in Section 2. We also give

preliminary results to be used later. We then discuss geometric properties of the value of

information in a number of special cases. Section 3 considers the case in which we measure

only a single alternative. Section 4 considers the case of a homogeneous prior. Section 5

considers the case of only two alternatives. In Section 6 we return to the general problem,

present an example in which the non-concavity of the value of information causes non-

intuitive behavior in the optimal allocation, and give a theoretical result that shows that

the value of information is “eventually concave,” in the sense that there exists a region of

the measurement space that expands out to infinity in all directions on which the value of

information is concave. Section 7 considers the consequences of non-concavity for sequential

measurement policies and describes the KG(*) policy for overcoming this non-concavity.

Except where provided in the text, proofs may be found in the appendix.

2 The Ranking and Selection Problem

We begin by providing a formal definition of the R&S problem. This definition follows the

standard definition in the literature — see, e.g., Raiffa and Schlaifer (1968). Suppose that

we have a collection of M alternatives, and associated with each of these alternatives is a

sampling distribution. The sampling distribution for alternative i ∈ {1, . . . ,M} is normal

with mean θi and variance λi, and samples are independent of each other when conditioned on
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θ1, . . . , θM . The sampling variances λ1, . . . , λM are known, but the sampling means θ1, . . . , θM

are unknown. We begin with a normally distributed Bayesian prior belief on the sampling

means that is independent across alternatives, θi ∼ N (µi, σ
2
i ). We allow σ2

i to be 0, in which

case θi is known and equal to µi. This may be used to model an alternative with known

value, and can also model a decision-maker’s option of not selecting any alternative. This

may be accomplished by adding an extra alternative with σ2
i = 0 and µi = 0. We refer to

the vector [θ1, . . . , θM ] as θ. The vectors µ and σ2 are defined similarly.

In this problem we are interested in determining through sampling which of the alterna-

tives has the largest sampling mean. Consider any sampling allocation n ∈ ZZM
+ , by which

we mean the sampling strategy that draws ni samples from each alternative i, where i ranges

over 1, . . . ,M . Here, ZZ+ = {0, 1, . . .}. Call the resulting set of observations Y . It can then

be shown (see, e.g., DeGroot (1970)) that the posterior distribution on θ is normal with in-

dependent components. The posterior variance of θi is Var [θi | Y, n] =
(

1
σ2

i
+ ni

λi

)−1

. In this

setting, taking more samples ni always reduces this posterior variance, although this need not

be true in more general sampling settings. Note that this posterior variance does not depend

on the observations Y . The posterior mean IE [θi | Y, n], on the other hand, does depend on

the observations. Its predictive distribution is normal, and the mean of this predictive distri-

bution is given by the tower property of conditional expectation, IE [IE [θi | Y, n]] = IE [θi] = µi.

We denote by σ̃2
i (ni) the variance of the predictive distribution, and it can be computed by

the conditional variance formula as

σ̃2
i (ni) = Var [IE [θi | Y, n]] = Var [θi]− IE [Var [θi | Y ]] = σ2

i −
(

1

σ2
i

+
ni

λi

)−1

=
σ2

i ni

(λi/σ2
i ) + ni

.

(1)

We write σ̃(n) to indicate the vector [σ̃1(n1), . . . , σ̃M(nM)]. Expressions for the first and

second derivatives of σ̃i are needed in proofs, and are provided in the appendix in Lemma 2.

It is important to keep in mind that there are four distinct but related normal distri-

butions involved with this problem. First, there is the sampling distribution N (θi, λi) that

governs the samples observed from alternative i. Then, there is the prior N (µi, σ
2
i ) on θi

as well as the posterior N (IE [θi | Y, n] ,Var [θi | Y, n]). Finally, since IE [θi | Y, n] is a condi-

tional expectation whose value is unknown until the observations Y are seen, it also has a
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Figure 1: Influence diagram of the ranking and selection problem. The optimal selection
decision is arg maxi IE [θi | Y, n], and it has value maxi IE [θi | Y, n].

distribution which is N (µi, σ̃
2
i (ni)).

After sampling according to the sampling allocation n, which directs us to take ni samples

from each alternative i, we choose one alternative and receive a reward equal to its sampling

mean. Assuming that we are most interested in maximizing the expected value of this reward,

and have no risk aversion, the best choice is the alternative with the largest posterior mean

IE [θi | Y, n], and the expected value of choosing this alternative is maxi IE [θi | Y, n]. Figure 1

shows an influence diagram that describes this situation.

We now calculate the value v(n) of the information obtained from the sampling allocation

n. This value of information v(n) is defined to be the incremental improvement over the

best expected value that can be obtained without measurement, which is maxi µi.

v(n) = IE
[
max

i
IE[θi | Y, n] | n

]
−max

i
µi. (2)

Given a sampling budget N ∈ ZZ+, the R&S problem is to find the sampling allocation

satisfying the budget constraint
∑

i ni ≤ N that maximizes the value of the information

obtained. That is,

max
n∈ZZM

+ :
P

i ni≤N

v(n). (3)

If the prior parameters µ and σ2 come directly from a practitioner’s initial belief, this problem

is called the single-stage Bayesian R&S problem. If, instead, µ and σ2 are the parameters

of a posterior resulting from the combination of some initial belief and some previous set
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of measurements, this problem is the second stage of what is called a two-stage Bayesian

R&S problem. In this article, we study the structure of the function v, both as interesting

on its own, and as a foundation for solving one-stage, two-stage, and fully sequential (see

Section 7) Bayesian R&S problems.

We may obtain an expression for v(n) that is more explicit than (2) using the predictive

distribution IE[θi | Y, n] ∼ N (µi, σ̃
2
i (ni)). Defining independent standard normals Z1, . . . , ZN

by Zi = (IE [θi | Y, n]− µi) /σ̃i(ni), we have

v(n) = IE
[
max

i
µi + σ̃i(ni)Zi

]
−max

i
µi. (4)

This expression offers a convenient platform for analysis. When suitably transformed, it can

also be computed efficiently as a 1-dimensional integral of a function of normal cumulative

distribution functions. For details, see section 4 of Ross (2003), which treats this computation

under the name “The Independent, Different Distributions Case”.

Although sampling allocations n are generally discrete in nature, we may extend the

function v continuously onto IRM
+ using the definition (4). By dropping the integrality con-

straint in (3) and solving the resulting relaxed problem, we obtain an upper bound on the

value of the optimal integral solution. Also, by rounding the solution to the relaxed problem

we obtain a feasible solution to (3) and a lower bound on the value of the optimal integral

solution. If the gap between upper and lower bounds is small, we may take the rounded

solution as a good suboptimal allocation.

Although the primary motivation for the continuous extension of v is as an analytically

convenient tool for obtaining approximate solutions to the integer-constrained R&S problem

(3), one may also consider problems in which observation occurs continuously through time,

and the measurement variance λi is the variance per unit time of the observation process. In

this case, the value ni is the amount of time to observe alternative i, and need not satisfy an

integrality constraint. Such problems are considered elsewhere in the literature. See, e.g.,

Chick and Gans (2009).

It is sometimes useful to work with v in terms of a function g : IRM
+ 7→ IR+ defined by

g(s) = IE
[
max

i
µi + siZi

]
−max

i
µi. (5)
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This definition is chosen so that v(n) = g(σ̃(n)). Expressions for the first and second partial

derivatives of g are needed in proofs, and are provided in the appendix in Lemmas 3 and 4.

We conclude by noting the following remark, which is useful in computation. Here and

throughout, Φ is the standard normal cumulative distribution function and ϕ is the standard

normal probability density function.

Remark 1. For c ∈ IR+, and Z a standard normal random variable,

IE
[
Z1{Z≥c}

]
=

1√
2π

∫
[c,∞)

z exp(−z2/2) dz =
1√
2π

∫
[c2/2,∞)

exp(−u) du = ϕ(c),

which follows from the substitution u = z2/2.

3 Measuring a Single Alternative

We begin by studying the structure of the function n 7→ v(nei) for a fixed alternative i. This

function gives the value of measuring that alternative n times without measuring any other

alternatives.

This function and its derivative may be computed analytically, as in the following propo-

sition. We provide a proof in the appendix for completeness, but its development is similar to

proofs that may be found elsewhere, including Frazier et al. (2008) and Gupta and Miescke

(1996).

Proposition 1. Define a constant ∆i = |µi − maxj 6=i µj| and a function f : IR 7→ IR by

f(z) = zΦ(z) + ϕ(z). Then,

v(nei) =

{
σ̃i(ni)f (−∆i/σ̃i(ni)) , if ni > 0,

0, if ni = 0,

∂

∂ni

v(niei) = σ̃′i(ni)ϕ

(
∆i

σ̃i(ni)

)
, for ni > 0.

This proposition shows that the value of measurement increases with the number of

measurements. This monotonicity is natural because more information often (but not always)

allows us to make better decisions. Although more information is often helpful, there will
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Figure 2: The value of measuring a single alternative, v(niei), as a function of ni, how many
times it is measured. The left-hand plot shows the value, and the right-hand plot shows the
(natural) log of its value. In this example, σi = 1, λi = 1, and ∆i = 10.

be some random outcomes for which it is not: an additional sample might fail to change our

decision, or it might even change our decision for the worse. In our problem, monotonicity

only holds in expectation.

The value of measurement is plotted in Figure 2 for ∆i = 10. The prior variance σ2
i and

the noise variance λi are both fixed to 1.

Notice that the value of measurement is not concave in general. It is concave when

there are many measurements, but when there are few the value of measurement may be

initially convex. This is especially true when the measurement noise is large relative to

the differences between alternatives. This lack of concavity may be understood by realizing

that when measurements are few and/or noisy, it is very unlikely that they will provide

enough evidence to cause us to change our mind about which alternative is best. Even if

the alternative being measured is actually better than the other alternatives, the strength

of our prior and the weakness of the evidence from measurement will cause us to ignore the

evidence collected. Instead, we will choose as best the same alternative that we thought was

best before the measurements. Only when measurements are sufficiently precise or numerous

will they have the ability to affect our ultimate decision.

We may think of σ̃i(n) as one measure of the amount of information collected. Indeed,

σ̃2
i (n) is the variance of the change in our belief due to measurement. As noted previously,

σ̃(n) is concave in n. But v(nei) = g(σ̃i(n)ei), and g is a convex function. We may think of g

11



as the function which translates a more well-behaved measure of the amount of information

collected into the value of that information. Thus, even if the “amount” of information

collected is concave in the number of measurements, the ability of this information to affect

the final decision can be non-concave, and so is its overall value. In some sense, it is the

discreteness of the ultimate implementation decision that causes this non-concavity in the

value of measurement.

In the case in which we only measure a single alternative, the following theorem com-

pletely characterizes convexity and concavity of the value of measurement.

Theorem 1. ni 7→ v(niei) is convex on (0, n∗i ] and concave on (n∗i ,∞), where

n∗i =
λi

8σ4
i

[
∆2

i − σ2
i +

√
∆4

i + 14σ2
i ∆

2
i + σ4

i

]
. (6)

This theorem tells us that, when ∆i or λi is larger, the region of non-concavity is larger.

This makes sense in light of our previous understanding, since larger values for ∆i or λi

imply that we need a more substantial body of evidence (in the form of more measurements)

to affect our decision-making.

Theorem 1 has as a consequence the following corollary, which gives two conditions under

which the value of measuring an alternative is concave everywhere. When an alternative

is tied for the best (∆i = 0), even a single measurement with very large measurement

noise is enough to cause us to change our decision – our prior belief is ambivalent about

which implementation decision is better, and so there is no bias imposed by the prior that

measurements must overcome. This is reminiscent of the related observation (Fatti et al.,

1987; Bickel, 2008; Delquié, 2008) that the value of information is maximized when the prior

belief is ambivalent between alternatives. When measurements are perfect (λi = 0), any

non-zero amount of measurement is enough to overcome any bias imposed by the prior.

Corollary 1. If ∆i = 0 or λi = 0, then ni 7→ v(niei) is concave on IR++.

Proof. ∆i = 0 or λi = 0 imply n∗i = 0, and concavity on IR++ follows from Theorem 1. �

We also have another type of structure in the single-measurement case which is given in
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the following proposition. This proposition shows log-concavity of the value of measurement,

but only for a measurement of a single alternative.

Proposition 2. For each alternative i, the function n 7→ v(nei) with domain IR+ is log-

concave.

4 The Homogeneous Case

Consider the measurement problem that arises when our prior parameters and measurement

variances are constant across alternatives, i.e., µi = µ, σ2
i = σ2 and λi = λ for all i and some

µ, σ2, and λ. We call such measurement problems homogeneous.

Homogeneous problems are quite common in practice. They arise when we cannot dis-

tinguish between alternatives before measuring them, but we are willing to make a priori

judgments of the population as a whole. As an example, consider evaluating job applicants.

Fairness may require that we do not favor a priori one applicant over another (i.e., that

µi and σ2
i are constant), but our past experience gives us a good idea of the distribution

of quality within the applicant pool as a whole (guiding our choice of µ and σ2). In other

situations, for example when evaluating different designs for a very complex and poorly

understood system using simulation, the a priori indistinguishability between alternatives

may arise from a lack of strong prior knowledge or a desire for objectivity. In still other

situations, for example when purchasing a piece of capital equipment from among several of

the same model produced by the same company, it may arise because alternatives genuinely

lack distinguishing characteristics.

As noted previously, the value of information is not concave in general, and this lack of

concavity may be seen in the homogeneous case. Figure 3 shows the value of information

for a homogeneous problem with M = 100 alternatives, µ = 0, σ2 = 10 and λ = 106. The

value of information is pictured as a function of the number of measurements of the first

alternative, where exactly 1 measurement is allocated to each of the other alternatives. The

figure clearly shows that the value of information is not concave in n1. This lack of concavity

occurs despite the fact that constant µi implies ∆i = 0, and so Corollary 1 shows that the
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Figure 3: The value of information as a function of n1 for a homogenous problem with
M = 100 alternatives, ni = 1 for i > 1, µ = 0, σ2 = 10, and λ = 106. Two different ranges
of n1 are pictured.

value of measuring a single alternative is concave. This seeming disparity may be understood

by realizing that, after measuring all but the first alternative, alternative 1 must overcome

a gap of (maxi6=1 IE [θi | Y, n])− µ1 to be implemented.

In the homogeneous case, intuition and symmetry suggest that our best course of action

would be to spread our measurement budget equally across the alternatives. Indeed, existing

general purpose allocation techniques for this single-stage R&S problem with linear loss,

LL(B) (Chick and Inoue, 2001) and OCBA for linear loss (He et al., 2007), both recommend

the equal allocation in the homogeneous case. (Although they recommend equal allocation in

the homogeneous case, they make other recommendations in other cases). Furthermore, the

following proposition shows that if the value of information were concave, then spreading the

budget equally would be optimal. This is accomplished by considering a hypothetical function

u that has several properties possessed by the value of information v in the homogeneous

case (monotonicity, continuity, symmetry), as well as the additional property of concavity.

Proposition 3. Let u : IRM
+ 7→ IR be a concave continuous function that is non-decreasing and

symmetric. Then a solution to the optimization problem max
{
u(n) : n ∈ IRM

+ ,
∑

i ni ≤ N
}

occurs at n = (N/M, . . . , N/M).

Unlike functions u considered in Proposition 3, the value of information v is not con-

cave, and thus this proposition provides no guarantee that the maximal value is obtained
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by spreading the measurement budget equally across the alternatives. Indeed, despite our

intuition, the equal allocation is often suboptimal and we can often obtain more value by

focusing our sampling on a strict subset of the alternatives and ignoring the rest.

To formalize this class of policies that focus effort on less than the full set of alternatives,

let m ≤ M be an integer. The allocation given by m is the one that chooses m alternatives

uniformly at random from the full set of M alternatives. It then allocates the measurement

budget equally across these m alternatives, so each one receives N/m measurements. This

class of policies includes the equal allocation policy as m = M .

Figure 4(a) shows the value obtained by such policies. Each line in the plot shows, for

a different value of the measurement noise λ, the value obtained as a function of m. The

problems considered have M = 50 alternatives, a measurement budget of N = 50, and a

homogeneous prior µ = 0, σ2 = 1. The values of λ generating each line, from top to bottom,

are 1/2, 1, 2, 4, 8, 16. Circles show the maximum attained by each line.

From the right-most edge of the figure, where m = M and the policy pursued is the equal

allocation policy, we see that the equal allocation policy is often suboptimal. The only case

pictured for which equal allocation is optimal is the top line, λ = 1/2. As we move down

the figure and the noise variance λ increases, the equal allocation becomes more suboptimal.

Thus, when the measurement noise is large, one may improve significantly upon the naive

equal allocation policy by ignoring some alternatives completely and focusing measurement

effort on those that remain. Equal allocation over the full set of alternatives dilutes the

measurement budget, while ignoring some alternatives and allocating the measurement bud-

get over those that remain concentrates it, and allows enough evidence to accumulate to

affect our decisions in a significant way. As the noise variance increases, we need to further

concentrate the budget, and we must ignore more alternatives.

We now provide an expression for allocation value as a function of m that is useful for

finding the best value of m. The value of the allocation generated by m is v
(

N
m

∑m
i=1 ei

)
,

which implicitly depends upon M , λ, and σ2 in addition to depending explicitly on N and
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m. Momentarily fix m and write the value of the corresponding allocation,

v

(
N

m

m∑
i=1

ei

)
= IE

[
max µi + σ̃i

(
N

m
1{i≤m}

)
Zi

]
−max

i
µi

=

{
IE
[
(maxi≤m σ̃i(N/m)Zi)

+] if m < M

IE [maxi≤m σ̃i(N/m)Zi] if m = M.

Define r = λ
Nσ2 , so that σ̃i(N/m) = σ/

√
1 + rm. Then,

v

(
N

m

m∑
i=1

ei

)
=

{
σIE
[(

maxi≤m(1 + rm)−1/2Zi

)+]
if m < M,

σIE
[
maxi≤m(1 + rm)−1/2Zi

]
if m = M.

These expressions may be evaluated using one-dimensional numerical integration. We pro-

vide details for the case m < M , and the case m = M may be evaluated similarly. Let

w(m, r) be the value obtained given r and m < M .

w(m, r) = IE

[
max
i≤m

(1 + rm)−1/2Zi

]
=

∫ ∞

0

P
{

max
i≤m

(1 + rm)−1/2Zi > u

}
du.

We rewrite the inner probability as

P
{

max
i≤m

Zi > u
√

1 + rm

}
= 1− P

{
max
i≤m

Zi ≤ u
√

1 + rm

}
= 1−P

{
Zi ≤ u

√
1 + rm, ∀i ≤ m

}
= 1−P

{
Z1 ≤ u

√
1 + rm

}m

= 1−Φ
(
u
√

1 + rm
)m

.

Thus, the value obtained for m < M is

w(m, r) =

∫ ∞

0

1− Φ
(
u
√

1 + rm
)m

du.

This expression for w(m, r) extends continuously to non-integral values of m.

We may find the best m simply by evaluating v
(

N
m

∑m
i=1 ei

)
/σ over the set m ∈ {1, . . . ,M}.

Equivalently, we may divide this expression by the constant σ and optimize that expression

instead. Observe that v
(

N
m

∑m
i=1 ei

)
/σ depends only upon r for m < M .

This leads us to recommend the following method for finding an approximately optimal

value of m. We temporarily drop the integrality constraint and upper and lower bounds on m,

allowing it to take values in (0,∞), and solve the resulting continuous optimization problem.

Let m∗(r) be the solution, m∗(r) = arg maxm∈[0,∞) w(m, r). The solution depends only upon
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Figure 4: Plots use µ = 0, σ2 = 1, and M = N = 50. (a) shows the value of allocations that
spread the measurement budget equally across m ≤ M alternatives in the homogeneous
case. From top to bottom, the lines use λ = 1/2, 1, 2, 4, 8, 16. Circles show the maximal
point on each line. (b) shows the optimal m as a function of r = λ/σ2N . The line shows the
continuous approximation m∗(r), and circles show exact solutions to the discrete problem.

r and is plotted in Figure 4(b), along with the optimal solution for the original discrete

problem that retains the integrality constraint. The figure shows that m∗(r) accurately

approximates the discrete solution in the example considered.

In Figure 4(b), as 1/r decreases the optimal m∗(r) decreases. Recalling the definition

1/r = Nσ2/λ, we see that decreasing either N/λ or the prior variance σ2 causes m∗(r) to

decrease as well. The quantity N/λ is an “effective” measurement budget, and gives the total

measurement precision that may be partitioned among the alternatives. When it is smaller,

discerning the best alternative is more difficult. When σ2 is smaller, the value of different

alternatives are typically closer together, and it is again harder to discern the best alternative.

Thus, decreasing either quantity forces us to concentrate our measurement budget onto a

smaller number of alternatives. This generalizes the observation from Figure 4(a) that as

the measurement precision 1/λ decreases, so too does m∗(r).

5 The Two-Alternative Case

We now briefly consider the case when the number of alternatives M is exactly 2, and the

concavity of the value of information in this case. This case is been studied elsewhere in
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Because of a certain symmetry, this case is much easier to analyze than the case when

M > 2, and it has been studied extensively in the decision analysis literature (Fatti et al.,

1987; Bickel, 2008; Delquié, 2008). The optimal allocation is described in Raiffa and Schlaifer

(1968). We briefly review this optimal allocation and its impact on the concavity of the value

of information.

First, we have the following easy-to-use expression for the value of information. This

expression is well-known in the literature (see, for example, Raiffa and Schlaifer (1968)).

Although the proof is straightforward, we provide one in the appendix for completeness.

Lemma 1. Suppose M = 2, and let s(n) =
√

σ̃2
1(n1) + σ̃2

2(n2). Then

v(n) = s(n)f (−|µ1 − µ2|/s(n)), where we recall that f(z) = zΦ(z) + ϕ(z).

Although s(n) =
√

σ̃2
1(n1) + σ̃2

2(n2) is a concave function, neither f nor v is generally

concave. Despite this lack of concavity, the optimal allocation is easily obtained by trans-

forming the problem. The function s 7→ sf(−|µ1 − µ2|/s) is strictly increasing (because

f is strictly increasing), and so maximizing the non-concave function v(n) is equivalent to

maximizing s(n). Furthermore, because s 7→
√

s is strictly monotonic on IR+, maximizing

s(n) (and hence also v(n)) is the same as maximizing s(n)2 = σ̃2
1(n1) + σ̃2

2(n2).

When measurement variances are equal, this maximization is accomplished by allocating

one sample at a time to the alternative with the largest posterior variance. Note that the

posterior variance is a deterministic function of the number of samples allocated, and so the

resulting allocation is deterministic. If the prior variances are equal across alternatives and

the sample size is even, then this results in an equal allocation. This deterministic allocation

is also optimal among all sequential allocations (Frazier et al., 2008).

The value of information is not concave in general in the two-alternative case, as is easily

seen by noting that the non-concavity of the value of measuring a single alternative occurs

in the two-alternative case. However, we do have concavity in a special case noted in the

following remark.

Remark 2. The value of information is concave when M = 2 and µ1 = µ2. This is because

Lemma 1 implies v(n) = s(n)f(0) = ϕ (0)
√

σ̃2
1(n1) + σ̃2

2(n2), which is concave.
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6 The General Case

We now consider the general case, with no special assumptions on µ, σ, M , or the number of

alternatives measured. We begin with an example in which the lack of concavity in the value

of measurement has a dramatic and counterintuitive effect on the optimal allocation. We then

present a theoretical result that shows, despite the existence of such oddly behaved examples,

the value of information is concave over a space of sufficiently large allocations. This may

allow finding the optimal allocation, or a reasonably tight lower bound, by optimizing over

this space using efficient convex programming algorithms.

Consider an example with M = 3 alternatives and prior µ = [1, 1, 0] and σ2 = [0, .005, .5].

Under this prior, we know the value of the first alternative perfectly, we have a strong belief

that the second alternative’s value close to 1, and we think the third alternative is smaller

(close to 0) but we are uncertain about this.

We consider different measurement budgets N , and for each one we find the optimal

allocation. Because this illustrative example has a very small number of alternatives, we can

find the optimal allocation by enumerating the set of possible allocations, calculating the

value of each, and choosing the one with the largest value. The optimal policy allocates no

measurements to the first alternative because its value is already known perfectly, so the set

of allocations given N is {x ∈ ZZ3
+ : x1 = 0, x2 + x3 = N}, and any allocation in this set is

completely determined by the choice of, say, x2.

Figure 5 shows the value of various allocations in this example, as well as the behavior of

the optimal allocation. Each line in Figure 5(a) shows the value obtained for a single value

of N as a function of the proportion x2/N . The optimal proportion for a given value of N is

the maximal point on the corresponding curve. As N increases, the value increases and the

optimal proportion changes. Figure 5(b) shows the optimal proportion as a function of N .

The circles are optimal among those restricted to integral numbers of measurements, while

the dashed line is optimal among all allocations.

When we have a single measurement to make (N = 1), the optimal allocation measures

alternative 2, which is the one whose mean is largest but whose variance is extremely small.
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Figure 5: Value of information in the example from the text with µ = [1, 1, 0], σ2 =
[0, .005, .5], and λ = 1. Panel (a) shows the value of the full range of allocations possi-
ble for various total measurement budgets N . Panel (b) shows the optimal allocation as a
percentage of samples taken from the second alternative both with integrality constraints
(circles) and without (dashed line).

When our measurement budget is just slightly larger (1 < N ≤ 4), the optimal alloca-

tion switches abruptly and spends its entire sampling budget on alternative 3, which is the

one with smaller mean but larger variance. This dramatic shift in behavior is due to the

lack of concavity in the value of sampling, and parallels similar behavior observed in the

homogeneous case.

As N increases further (N > 4), we suffer diminishing marginal returns from measure-

ments of the low-mean high-variance alternative, and the optimal allocation allocates some

of the growing measurement budget to the low-variance alternative. The proportion of sam-

ples allocated to the low-variance alternative is small initially, but then grows toward an

asymptotic level. This asymptotic level does not depend on the prior variances — only upon

the prior means.

The asymptotic proportion toward which the optimal policy is growing is the propor-

tion that is optimal for large values of N . In this example, the asymptotic proportion is
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approximately 0.84. (This was established by calculating the optimal proportion for finite

but very large values of N , and observing that the optimal proportions were all between

0.8383 and 0.8385 for values tested from 108 up to the largest value tested, 1010.) This

asymptotic proportion is often far from the optimal proportion for the given value of N . For

example, Figure 5(b) shows that the best proportion when N = 25 is 0.36 which is quite

far from 0.84. The predominant methods for finding good single-stage allocations, LL(B)

(Chick and Inoue, 2001) and the OCBA (Chen (1996),He et al. (2007)), approximate this op-

timal asymptotic proportion and then suggest that we allocate our available (finite) sampling

budget according to this proportion. The difference between asymptotic and finite-horizon

optimal proportions and its effect on these policies may be an interesting topic for future

research.

Figure 6 shows contours of the value of information for this example, as well as circles

for the optimal (integrality-constrained) allocations for values of N up to 11. It also shows

a dark solid line dividing the region on which the value of information is not concave (to the

left of the line) from the region on which it is concave (right of the line). Although the value

of information is not concave in general, it is concave on most of the domain. Furthermore,

the optimal policy’s switch from putting all its measurements on alternative 2 to putting

all on alternative 3 occurs as we transition from the non-concave to the concave regions.

Afterward, in the concave region, the optimal allocation behaves more reasonably. Figure 7

shows similar partitions of the allocation space into regions on which the value of information

is concave and non-concave for this prior and two others. In all three priors, we see that, as

long as the number of measurements allocated to each alternative is large enough, the value

of information is concave.

The following theorem shows that such a region of “n large enough” on which the value

of information is concave always exists. This suggests that one way to improve the quality

of an allocation found through existing methods, e.g., via LL(B) or OCBA, is to take the

allocation given by either of these existing methods, and then perform gradient ascent or

a second order convex optimization method. If both the starting allocation and the global

maximum lie within this concave region, as seems likely when the measurement budget is
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µ = [1, 1, 0], σ2 = [0, .005, .5], λ = 1. Cir-
cles show optimal integrality-constrained allo-
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Figure 7: Regions of concave value of infor-
mation for three different priors. For a given
prior (A, B or C), the value of information is
concave in the region above and to the right of
the corresponding line. Prior A is µ = [1, 1, 0]
σ2 = [0, .005, .5]; Prior B is µ = [1, 1.3, 1.3]
σ2 = [0, .1, .1]; and Prior C is µ = [1, 1.3, 1]
σ2 = [0, .1, .1]. In all cases λ = 1.

large, then this technique will find the globally optimal allocation. If not, it may still lead

to better allocations.

Theorem 2. There exists an N∗ ∈ IRM
+ such that v is concave on the region

{
n ∈ IRM

+ : ni ≥ N∗
i ∀i

}
.

7 The Sequential Case

Previously we considered the non-concavity of the value of information for single-stage sam-

pling. Now we consider the implications of this non-concavity for fully sequential policies,

and in particular for a myopic fully sequential sampling policy known as the (R1, . . . , R1)

policy (Gupta and Miescke, 1996), and analyzed further in Frazier et al. (2008), where it

was called the knowledge-gradient (KG) policy.

A fully sequential policy is one in which the allocation of each measurement is decided

separately. Moreover, each decision is based upon the results of all previous measurements.

Thus, a sequential policy may use the information collected so far to hone later measurement

decisions, and so we may measure more efficiently with a sequential policy than we can with

the single-stage policies discussed so far. In particular, many good sequential policies use
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early measurements to roughly identify which alternatives are likely to be the best, and then

focus later effort on these alternatives in order to discern the best alternative from those

that are merely good.

In the sequential setting, the value of a measurement depends upon the measurements

that will be taken in the future. Such values may be calculated, at least in theory, through

dynamic programming, although the computational challenge of computing them for all

but the smallest problems currently seem insurmountable. The details of such a dynamic

programming formulation may be found in Frazier et al. (2008).

Due to the difficulty of computing the value of information in the sequential setting, a

number of sequential policies make decisions based upon the value of information for single-

stage allocations. These policies include the KG policy and the LL(S) policy of Chick and

Inoue (2001). The single-stage value of an allocation n is the v(n) defined earlier, where

the prior is replaced by the current posterior belief. Of course, the value of information for

single stage allocations is only an approximation to the value of information for sequential

sampling, and so policies that maximize the single-stage value of information with each

allocation are not optimal overall.

In this section, to match the usage of sequential policies, the value v(n) of an allocation

n ∈ ZZM
+ will be computed under the current posterior, rather than under the prior. That

is,

v(n) = IEt

[
max

i
IEt[θi | Y, n] | n

]
−max

i
IEt[θi], (7)

where t is the number of measurements observed so far, and IEt is the conditional expectation

with respect to these observations. Thus, v(n) is implicitly a function of the information

collected so far, but we suppress this dependence in the notation.

7.1 KG and KG(*) Policies

As described above, several sequential policies use the single-stage value of information v to

make allocation decisions, including the KG policy. The KG policy is defined as the policy

that measures, at each point in time, the alternative arg maxx v(ex). The quantity v(ex) is
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called the KG factor, and the motivation for the KG policy is that a measurement’s KG

factor, which is its single-stage value, approximates its sequential value.

The KG policy is optimal when only a single measurement remains in the budget (N = 1).

The previous discussion, however, establishes that the optimal single-stage allocation may

vary greatly depending on the budget, and the best alternatives to measure when the budget

is small may be far from best when the budget is large. Thus, it is natural to be concerned

about problems induced in the KG policy by this effect. From a convergence result in Frazier

et al. (2008), we can be sure that the effect is not severe enough to prevent convergence to

the best alternative given large enough N , but we may be concerned about performance at

intermediate values of N .

Observe that v(mex)/m is the average benefit per measurement obtained by measuring

alternative x a total of m times. One fundamental problem encountered by the KG policy

is that the KG factor, which is v(ex), may be many orders of magnitude smaller than the

average benefit of some larger number of measurements. This can mislead the policy into

making poor decisions, particularly when some alternatives have this scaling problem and

others do not.

With these considerations in mind, we propose a policy based upon the KG policy that

considers the value of multiple measurements of the same alternative. We call this policy

KG(*). The value of measuring an alternative is approximated by the best average value

that can be obtained from measuring it a fixed number of times.

xn ∈ arg max
x

max
1≤m≤N−n

v(mex)/m. (8)

We call the quantity max1≤m≤N−n v(mex)/m the KG(*) factor. This maximum may either

be taken over the integers {1, . . . , N − n}, or over the entire continuous interval [1, N − n].

The KG(*) policy first appeared in Chick and Frazier (2009a,b), where it was described

briefly and used in a numerical study. The current article describes and justifies this policy

in a more complete way.

The KG(*) policy is related to the Blinkered Value of Information (BVI), recently in-

troduced in Tolpin and Shimony (2009). The BVI is designed for settings where each mea-
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surement has an explicit cost, and so adding measurements can actually decrease net value.

In such settings, the BVI of an alternative is defined to be the maximum total value over

all possible batches of measurements of that alternative. In contrast, the KG(*) factor is

the maximum average value per-measurement, and can be applied in settings like the one

considered here where measurements are limited in quantity but do not have an explicit cost

comparable with the values of the alternatives. Later in this section we discuss an extension

of KG(*) to the cost-based setting.

The following theorem shows that the KG(*) policy retains the theoretical guarantees of

the KG policy of optimality at N = 1 and N = ∞ shown in Frazier et al. (2008), and in

Section 7.3 we see that it improves upon the KG policy’s performance at other values of N .

Theorem 3. The sequential value of the KG(*) policy is equal to that of the optimal sequen-

tial policy when N = 1, and also in the limit as N →∞.

The statement that the KG(*) policy and the optimal sequential policy have asymptoti-

cally equal values in the limit as N →∞ is equivalent to the statement that, as the number

of measurements grows large, we discover and implement the best alternative with probabil-

ity under the prior growing to 1. In Frazier and Powell (2009) this is known as “convergence

to a global optimum.”

The effect of considering this best average value measuring a single alternative is to

smooth the non-concavity in the value of measurement. It allows the policy to value an

alternative according to our ability to measure it within the budget, rather than myopically

assuming this budget is 1. This valuation is still only an approximation to the true sequential

value of information computed using the fact that the policy may behave in a fully sequential

way. Nevertheless it is a better approximation than the KG policy, avoiding some problems

caused by the non-concavity of the value of information.

Although we consider settings where measurements are limited but do not carry an

explicit cost, one could apply the KG(*) idea to other settings. If each measurement has

a cost cx, the value v(mex) of m measurements of alternative x becomes −mcx + v(mex),

and the average net value per measurement is −cx + v(mex)/m. A natural generalization of
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Figure 8: The value of information for single-stage sampling, as a function of the number of
measurements. There are three alternatives: µ1 = −1, σ1 = 1.1; µ2 = 0, σ2 = 0.003; µ3 = 0,
σ0 = 0. The sampling variance is λ = 10. Solid lines without and with circles show the value
of sampling from alternatives 1 and 2 respectively. The dotted line is tangent to the solid
line without circles, and illustrates the KG(*) value of sampling from alternative 1.

the KG(*) factor for alternative x is then max1≤m≤N−n[−cx + v(mex)/m]. Since cx does not

depend on m, this quantity is simply the (cost-free) KG(*) factor minus the cost cx. Despite

this possibility for generalization, we remain focused on the cost-free limited-measurement

case.

Figure 8 illustrates the KG(*) policy. The situation pictured is one with three alterna-

tives, where the first alternative has µ1 = −1, σ1 = 1.1, the second alternative has µ2 = 0,

σ2 = 0.003 and the third alternative has a known value of 0. A sampling variance of λ = 10 is

common across the alternatives. The solid line without circles (henceforth called the “solid”

line) shows the single-stage value of sampling from the first alternative as a function of the

number of samples taken, while the solid line with circles (the “circled” line) shows this value

for sampling from the second alternative. The dotted line starts at the origin and is tangent

to the solid line. The right panel is a magnification of the left panel.

The decision of the KG policy is given by the value of a single sample allocated to a

single alternative. This quantity is seen in the right panel as the solid and circled lines at

nx = 1. Because the circled line (corresponding to alternative 2) is higher than the solid line

at nx = 1, the KG policy measures the second alternative. It does so despite the fact that
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the left panel shows that much more value can be obtained from repeated measurements

of alternative 1 than can from alternative 2. Indeed, with a miniscule variance of 0.003,

measuring this alternative is worth very little — 25 measurements allocated in a single stage

provide an expected value of less than .002, while the left panel shows that 25 measurements

of the other unknown alternative provide a value that is 30 times larger.

The KG(*) factor may be computed from the dotted line, which begins at the origin and

lies tangent to the v(nx) curve. Observe that the slope of a line that begins at the origin and

intersects v(nx) at a point nx = m is v(m)/m. Since the dotted line is tangent to v(nx), its

slope is highest among all such lines intersecting v(nx), and so is equal to maxm≥0 v(m)/m.

If the point of intersection is between 1 and N , as it is for the dotted line in Figure 8,

then its slope is the KG(*) factor evaluated over a continuous rather than discrete range.

Furthermore, the value of the dotted line at nx = 1 is its slope, and so the KG(*) factor

for alternative 2 is given by the dotted line at nx = 1. This parallels the KG factor for

alternative 2, which is equal to the solid line at nx = 1.

In contrast to the solid line, the circled line is concave (as implied by Corollary 1 and

µ2 = maxx µx), and the KG(*) factor for this alternative is the same as the KG factor. From

this, we see that the KG(*) policy measures the first alternative, which is clearly a better

decision than the KG policy’s decision to measure the second. We revisit a similar example

later in Section 7.3.

Observe that the curve resulting from following the dotted line up to the point of intersec-

tion, and the solid line afterward, is concave. Furthermore, it is the concave envelope of the

value of information curve. With this understanding, we see that the KG(*) policy chooses

measurements to maximize a “concavified” version of the value of measurement. As in the

case with the solid line, if a single measurement has very little value on its own, but repeated

measurement will have significant value, then the KG(*) factor captures this fact. It does

so by dividing the eventually significant value that may be obtained among the number of

measurements necessary to obtain it, crediting each measurement with the portion that it

contributes to the whole. On the other hand, if a single measurement already puts us in the

region where the value of measurement is concave, then the KG(*) factor is the same as the
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KG factor. Also observe that if the remaining budget is so small that it prevents us from

reaching what would otherwise be the tangent point (the number of measurements giving the

largest average value per measurement), then the KG(*) factor gives only the best average

value per measurement obtainable with the remaining budget. In particular, when N = 1,

the KG(*) policy is the same as the KG policy.

Although the KG(*) policy addresses the non-concavity of the value of information and

the problems it causes for the KG policy, the KG(*) factors it uses remain only approxima-

tions to the value of information for sequential sampling. They ignore that one may sample

more than one alternative in the future, and also that future decisions of how many times to

sample an alternative may be made sequentially rather than in a single stage. Nevertheless,

Section 7.3 shows that it significantly outperforms the KG policy in some cases, which is

significant because the KG policy performed well when compared to other fully sequential

policies in an empirical study (Frazier et al., 2008).

7.2 Computing the KG(*) Policy

To compute the KG(*) policy, we need to find the maximum in (8). This is facilitated by

the following result. The lower bound m from this result was derived as an approximation,

but not shown to be an upper bound, in Chick and Frazier (2009b).

Proposition 4. If ∆x = 0 then m 7→ v(mex)/m is strictly decreasing on IR++. If ∆x 6= 0,

then m 7→ v(mex)/m is strictly unimodal over IR++ and its unique maximum m∗ satisfies

m ≤ m∗ ≤ m, where

m =
λx

4σ2
x

(
−1 + r +

√
1 + 6r + r2

)
,

m =
λx

4σ2
x

(
1 + r +

√
1 + 10r + r2

)
,

and where r = ∆2
x/σ

2
x.

This proposition has the following immediate consequences for solutions to the con-

strained optimization problems arg maxm=1,...,N−n v(mex)/m and arg maxm∈[1,N−n] v(mex)/m.
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• If N − n ≤ m then

arg max
m=1,...,N−n

v(mex)/m = arg max
m∈[1,N−n]

v(mex)/m = N − n.

• If ∆x = 0 or 1 ≥ m then

arg max
m=1,...,N−n

v(mex)/m = arg max
m∈[1,N−n]

v(mex)/m = 1.

• Otherwise,

arg max
m=1,...,N−n

v(mex)/m ∈ [max(1, m), min(N − n, m)],

arg max
m∈[1,N−n]

v(mex)/m ∈ {max(1, floor(m)), . . . , min(N − n, ceil(m))} .

In the last case, we have several options. In the integer-constrained optimization problem,

we may simply evaluate the objective function at each integer in the range. Or, in both the

integer-constrained and continuous problems, we may find m∗ numerically using a line-search

on the strictly decreasing function h defined in the proof of Proposition 4. This function

h has its only root at m∗. The value of m∗ then immediately provides the solution to

either constrained optimization problem. Or, one may simply approximate the solution, for

example, by taking the average of the upper and lower bounds m and m. In practice, such

an approximation is computationally convenient and seems to cause little degradation in

performance.

7.3 Computational Experiments

It is instructive to compare the decisions made by KG and KG(*) policies on a simple

problem. Consider three alternatives, where one is known perfectly, a great deal is known

about another, and less is known about the last alternative. Furthermore, suppose that the

two well-known alternatives are equal in value, while we estimate the last alternative to be

worse. This example may be written as σ1 = 0, σ2 ≈ 0, σ3 > 0, µ1 = 0, µ2 = 0, µ3 < 0.

In this problem, because alternative 1 is perfectly known, there is no value in measuring it.

The question we then face is whether to measure alternative 2 or 3. The value of measuring
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alternative 2 is quite low because it has a very low variance – even though measuring it

may reveal it to be better than alternative 1, the amount by which it may improve upon

alternative 1 is very likely to be small. In contrast, if σ3 is large enough, and if µ3 is not too

small, then alternative 3 may be significantly better than both alternatives 1 and 2 and there

may be significant value in measuring it. Furthermore, for larger values of either µ3 or σ3,

there is a greater potential for discovering substantial value in alternative 3, and measuring

it should have greater value.

In Figure 9(a) we fix σ2 = 10−2 and µ2 = 0, and examine the decisions of the KG and

KG(*) policies as a function of µ3 and σ3. For each policy a curve is plotted, and the region

above and to the right contains those priors for which the policy measures alternative 3 first.

Below and to the left of each curve are those priors for which alternative 3 is less attractive,

and the policy instead measures alternative 2.

The figure shows that KG(*) is more willing than KG to measure alternative 3, the

alternative with large variance. Indeed, KG’s tendency to measure alternative 2 seems

extreme and counterproductive. Even if we were to learn its value perfectly, we would only

obtain a reward of

IE[max(θ1, θ2)] = IE[max(0, θ2)] = σ2f(µ2/σ2) = σ2f(0) = 10−2 1√
2π

≈ 0.004.

In reality, the reward resulting from measuring alternative 2 is even smaller because of

measurement noise, and because later measurements of alternative 3 may reveal it to be

better than either alternative 2 or alternative 1.

Contrasting the low value of measuring alternative 2, the ultimate value of measuring

alternative 3 can be quite large. For example, consider the case µ3 = −1 and σ3 =
√

2. In

this case, learning the value of alternative 3 perfectly (without learning about alternative 2),

has value

IE[max(0, θ3)] = σ3f(µ3/σ3). =
√

2f(−1/
√

2) ≈ 0.2.

This value is nearly two orders of magnitude larger than the value of learning alternative 2

perfectly. Yet, the KG policy chooses to measure alternative 2.
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(b) Opportunity cost vs. number of itera-
tions for KG and KG(*) for µ = [0, 0,−1],
σ = [0, 10−2,

√
2], λ = 100. Plotted is the

average opportunity cost over 1000 indepen-
dent runs. Opportunity cost at time n is
maxi θi − θarg maxj µn

j
.

Figure 9: Comparison of KG and KG(*) for a problem with three measurement choices.

Of course, one does not learn the value of an alternative perfectly when one measures

it. In the calculation behind the KG policy, we assume that only one measurement will

be allowed, and under this assumption measuring alternative 2 is best. This is because of

the non-concavity induced by the large measurement variance (λ = 100). Contrasting the

myopically optimal action, if the budget is sufficiently large, it is prudent to first measure

alternative 3 several times to determine whether its value is significantly better than 0 (the

true value of alternative 1, and the initial estimate of the value of alternative 2), and then

later, if sufficient budget remains, go back and learn more about alternative 2. It is in

learning about alternative 3 that the most significant benefits are to be found.

Figure 9(b) shows the performance of the KG and KG(*) policies when µ3 = −1 and

σ3 =
√

2. The average opportunity cost over 1000 independent simulations of the two policies

is plotted, where opportunity cost at a time n is the difference in value between the best

decision that can be made with perfect information, and the best decision that can be made

with the available information. This opportunity cost is written maxi θi − θarg maxj µn
j
.

The KG policy measures alternative 2 through every iteration pictured, from 1 to 1000.

Thus, it reduces its opportunity cost by a small amount when θ2 > θ1, but it misses the
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large benefit of learning about alternative 3. Eventually, under the KG policy, the variance

of our belief about alternative 2 shrinks enough that we measure alternative 3, but in this

example, the measurement budget ends before this eventuality is reached. In contrast, the

KG(*) policy measures alternative 3 immediately, and sees a large reduction in opportunity

cost as it learns whether θ3 or θ1 is better.

8 Conclusion

Managers realize intuitively that it is typically the case that they cannot evaluate all alter-

natives when faced with a decision. Often referred to as “analysis paralysis” they realize

that they have to do a good job with a reasonable set of choices. We revisit the nonconcavity

property in the value of information, itself a surprising behavior for many, and investigate

its implications in terms of determining how to allocate limited resources for collecting in-

formation. In particular, we show that there is an optimal number of choices which depends

on the measurement budget and the level of uncertainty in a measurement.

An effective policy for determining how to collect information sequentially is one which

maximizes the expected value of a single measurement, sometimes referred to as the knowl-

edge gradient policy. We show, however, that such a policy can perform very poorly in the

presence of nonconcavity in the value of information. As an alternative, we introduce the

KG(*) policy which chooses to measure the alternative which offers the highest average value

when we are allowed to observe an alternative multiple times. This policy overcomes a major

limitation of the original knowledge gradient policy for problems where a single observation

is noisy and yields limited information. The KG(*) policy is effectively allowing us to pay

for a more precise measurement.
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A Proofs

A.1 Derivative Expressions

The following lemmas give explicit expressions for the first and second derivatives of σ̃i and

g needed in other proofs.

Lemma 2. The first and second derivatives of σ̃i are given by

σ̃′i(ni) =
λi

2σi

n
−1/2
i

(
λi

σ2
i

+ ni

)−3/2

,

σ̃′′i (ni) = − λi

4σi

n
−3/2
i

(
λi

σ2
i

+ ni

)−5/2(
λi

σ2
i

+ 4ni

)
.

The second derivative is negative, and so σ̃i is concave.

Proof. Define r = λi/σ
2
i . Then σ̃i(ni) =

√
σ2

i ni/(r + ni). We compute the first derivative as

σ̃′i(ni) = σi
1

2

[
ni

r + ni

]−1/2
r

(r + ni)2
=

σir

2

(
ni(r + ni)

3
)−1/2

.

We compute the second derivative from the first derivative as

σ̃′′i (ni) =
σir

2

[
−1

2

(
ni(r + ni)

3
)−3/2

] [
(r + ni)

3 + 3ni(r + ni)
2
]

= −σir

4

r + 4ni

n
3/2
i (r + ni)5/2

.

�

Lemma 3.

∂g

∂si

(s) =


IE
[
ϕ
(

W−µi

si

)]
, if si > 0,

ϕ (0) , if s = 0 and µi = maxj 6=i µj,

0, otherwise.

where W = maxj 6=i µj + sjZj.

Proof. We first calculate the right partial derivative of g with respect to si. If the limit

exists, this right partial derivative is

∂+g

∂si

(s) = lim
ε→0+

g(s + εei)− g(s)

ε
= lim

ε→0+
IE

[
max(µi + (si + ε)Zi, W )−max(µi + siZi, W )

ε

]
.
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Since |max(a, c) − max(b, c)| ≤ |a − b| for a, b, c ∈ IR, the term inside the expectation is

dominated by |(si + ε)Zi − siZi|/ε = |Zi|, which is integrable. Thus, by the dominated

convergence theorem, the limit and expectation may be interchanged, and

∂+g

∂si

(s) = lim
ε→0+

g(s + εei)− g(s)

ε
= IE

[
∂+

∂si

max(µi + siZi, W )

]
= IE

[
Zi1{µi+siZi>W} + Z+

i 1{µi+siZi=W}
]
.

Thus ∂+g
∂si

(s) exists and is given by this expression.

We now consider two cases, si = 0 and si 6= 0. First, consider the case si = 0. In this case,

the right derivative ∂+g
∂si

(s) is equal to the derivative ∂g
∂si

(s) because si is at the left edge of the

domain IRM
+ of g. Furthermore, IE

[
Zi1{µi+siZi>W}

]
= IE

[
Zi1{µi>W}

]
= IE [Zi] P {µi > W} =

0, where the first equality follows by substituting si = 0, the second equality follows from

the independence of Zi and W , and the third equality follows from IE [Zi] = 0. Thus,

∂g

∂si

(s) =
∂+g

∂si

(s) = IE
[
Z+

i 1{µi+siZi=W}
]

=

{
0, if si = 0, s 6= 0,

1√
2π

1{µi=W}, if s = 0.

where we have used P {µi + siZi = W} = P {µi = W} = 0 to show the expression for si =

0, s 6= 0, and the fact that 1{µi+siZi=W} = 1{µi=maxj 6=i µj} is deterministic together with

IE[Z+
i ] = ϕ (0) = 1/

√
2π (from Remark 1) to show the expression for s = 0. This shows the

lemma for the case si = 0.

We now consider the case si > 0. In this case, P {µi + siZi = W} = 0 and ∂+g
∂si

(s) =

IE
[
Zi1{µi+siZi>W}

]
. Then an argument similar to the one above, in which integrability is

shown and then the dominated convergence theorem applied, shows

∂−g

∂si

(s) = IE

[
∂−

∂si

max(µi + siZi, W )

]
= IE

[
Zi1{µi+siZi>W} + Z−

i 1{µi+siZi=W}
]

= IE
[
Zi1{µi+siZi>W}

]
,

where the last equality follows from P {µi + siZi = W} = 0. The equality of left and right

derivatives implies their equality with ∂g
∂si

(s).

Applying the tower property provides

∂g

∂si

(s) = IE
[
IE
[
Zi1{µi+siZi>W} | W

]]
= IE

[
IE

[
Zi1n

Zi>
W−µi

si

o | W
]]

= IE

[
ϕ

(
W − µi

si

)]
,
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where the last equality follows from Remark 1. This shows the lemma for the case si > 0. �

Lemma 4. For s 6= 0 and i 6= j,

∂2g

∂s2
i

= E
[(

W − µi

s3
i

)
ϕ

(
W − µi

si

)]
,

∂2g

∂si∂sj

= E
[(
−W + µi

si

)
ϕ

(
W − µi

si

)
Zj1{µj+sjZj≥W ′}

]
,

where W = maxk 6=i µk + skZk and W ′ = maxk 6=i,j µk + skZk. Furthermore, these derivatives

are continuous in s for all s 6= 0. Thus, ∇g(s) and ∇2g(s) exist and are continuous at all

s 6= 0.

Proof. Let s 6= 0. We first show the claimed expression for ∂2g
∂s2

i
. By Lemma 3,

∂2g

∂s2
i

=
∂

∂si

E
[
ϕ

(
W − µi

si

)]
= lim

u→si

E
[

1

u− si

(
ϕ

(
W − µi

u

)
− ϕ

(
W − µi

si

))]
. (9)

Consider the open ball B = (si/2, 3si/2) containing si. We now bound over u ∈ B the

expression inside the expectation in (9). For all u ∈ B,

1

|u− si|

∣∣∣∣ϕ(W − µi

u

)
− ϕ

(
W − µi

si

)∣∣∣∣ ≤ sup
u′∈B

∣∣∣∣ ∂

∂u′
ϕ

(
W − µi

u′

)∣∣∣∣ ≤ ∣∣∣∣W − µi

(u′)3

∣∣∣∣ϕ (0) ,

where we note that ∂
∂u′

ϕ
(

W−µi

u′

)
= W−µi

(u′)3
ϕ
(

W−µi

u′

)
. This bound is integrable, and so by the

dominated convergence theorem we may exchange the limit and expectation in (9) to obtain

∂2g

∂s2
i

= E
[

∂

∂si

ϕ

(
W − µi

si

)]
= E

[
W − µi

s3
i

ϕ

(
W − µi

si

)]
,

which is the claimed expression for ∂2g
∂s2

i
.

We now show the claimed expression for ∂2g
∂si∂sj

. By Lemma 3,

∂+

∂sj

(
∂g

∂si

)
=

∂+

∂sj

E
[
ϕ

(
W − µi

si

)]
= lim

ε→0+

1

ε
E
[
ϕ

(
Wε − µi

si

)
− ϕ

(
W − µi

si

)]
(10)

where Wε = max {maxk 6=i,j µk + skZk, µj + (sj + ε)Zj}.

For any a > 0 and ε′ ∈ (0, a),

1

ε′

∣∣∣∣ϕ(Wε′ − µi

si

)
− ϕ

(
W − µi

si

)∣∣∣∣ ≤ sup
ε∈(0,a)

∣∣∣∣∂+

∂ε
ϕ

(
Wε′ − µi

si

)∣∣∣∣
≤ sup

ε∈(0,a)

|Wε − µi|
si

|Zj|ϕ (0) = (|W − µi| + a|Zj|)|Zj|ϕ (0) /si,
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where we have used

∂+

∂ε
ϕ

(
Wε − µi

si

)
=

(
−Wε + µi

si

)
ϕ

(
Wε − µi

si

)
Zj1{µj+(sj+ε)Zj≥W ′}.

The bound (|W −µi|+a|Zj|)|Zj|ϕ (0) /si on the integrand of (10) is integrable, and so by

the dominated convergence theorem we may exchange the limit and expectation to rewrite

(10) as

∂+

∂sj

(
∂g

∂si

)
= E

[
∂+

∂sj

ϕ

(
W − µi

si

)]
= E

[(
−W + µi

si

)
ϕ

(
W − µi

si

)
Zj1{µj+sjZj≥W ′}

]
.

Using a similar argument, in which we use the dominated convergence theorem to ex-

change a limit with an integral, we may calculate the left derivative as

∂−

∂sj

(
∂g

∂si

)
= E

[
∂+

∂sj

ϕ

(
W − µi

si

)]
= E

[(
−W + µi

si

)
ϕ

(
W − µi

si

)
Zj1{µj+sjZj>W ′}

]
.

The only difference is that the inequality in the indicator function is now strict, because the

corresponding expression for ∂−

∂ε
ϕ
(

Wε−µi

si

)
has a strict inequality in the indicator function.

Then, s 6= 0 implies P {µj + sjZj = W ′} = 0, and

∂+

∂sj

(
∂g

∂si

)
=

∂−

∂sj

(
∂g

∂si

)
= E

[(
−W + µi

si

)
ϕ

(
W − µi

si

)
Zj1{µj+sjZj≥W ′}

]
The left and right derivatives agree, and so are equal to the derivative ∂2g

∂si∂sj
.

We now show continuity of ∂2g
∂s2

i
and ∂2g

∂si∂sj
. For u ∈ IRM , let Wu = maxk 6=i µk + ukZk and

W ′
u = maxk 6=i,j µk + ukZk.

First, consider ∂2g
∂s2

i
. We have

lim
u→s

∂2g

∂s2
i

(u) = lim
u→s

E
[(

Wu − µi

u3
i

)
ϕ

(
Wu − µi

ui

)]
= E

[
lim
u→s

(
Wu − µi

u3
i

)
ϕ

(
Wu − µi

ui

)]
,

= E
[(

W − µi

s3
i

)
ϕ

(
W − µi

si

)]
=

∂2g

∂s2
i

(s),

where the exchange of limit and expectation follows from the dominated convergence theorem

and the following integrable bound satisfied by all u within an ε-ball of s, with ε < si,∣∣∣∣(Wu − µi

u3
i

)
ϕ

(
Wu − µi

ui

)∣∣∣∣ ≤ ∣∣∣∣Wu − µi

u3
i

∣∣∣∣ϕ (0) ≤ |W − µi|+ ε maxk 6=i |Zk|
(si − ε)3

ϕ (0) .
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Now consider ∂2g
∂si∂sj

. We have

lim
u→s

∂2g

∂si∂sj

(u) = lim
u→s

E
[(
−Wu + µi

ui

)
ϕ

(
Wu − µi

ui

)
Zj1{µj+ujZj≥W ′

u}

]
= E

[
lim
u→s

(
−Wu + µi

ui

)
ϕ

(
Wu − µi

ui

)
Zj1{µj+ujZj≥W ′

u}

]
= E

[(
−W + µi

si

)
ϕ

(
W − µi

si

)
Zj1{µj+sjZj≥W ′}

]
=

∂2g

∂si∂sj

(s),

where the exchange of limit and expectation follows from the dominated convergence theo-

rem, and the following integrable bound isatisfied by all u within an ε-ball of s, with ε < si,∣∣∣∣(−Wu + µi

ui

)
ϕ

(
Wu − µi

ui

)
Zj1{µj+ujZj≥W ′

u}

∣∣∣∣ ≤
∣∣∣∣−Wu + µi

ui

∣∣∣∣ϕ (0) |Zj|

≤ |−W + µi|+ ε maxk 6=i |Zk|
si − ε

ϕ (0) |Zj|

In taking the limit, we have also noted that the event {µj + sjZj = W ′} has probability 0,

and so the event limu→s 1{µj+ujZj≥W ′
u} = 1{µj+sjZj≥W ′} has probability 1. �

Proof of Proposition 1

First, recall that v(nei) = g(σ̃i(n)ei). Thus, to show the claimed expressions for v(nei) and

its derivative, it is enough to provide expressions for g(sei) and its derivative.

For s > 0, by Lemma 3,

∂

∂s
g(sei) = ϕ

(
maxj 6=i µj − µi

s

)
= ϕ

(
∆i

s

)
,

where we have used the symmetry of ϕ. This expression together with the chain rule shows

the claimed expression for ∂
∂n

v(nei).

We now provide an analytic expression for g(sei). For s = 0, g(sei) = 0. For s > 0,

g(sei) = E
[
max(µi + sZi, max

j 6=i
µj)

]
−max

j
µj

=

{
E [max(sZi,−∆i)] if µi = maxj µj,

E [max(−∆i + sZi, 0)] if µi < maxj µj,

= E [max(sZi,−∆i)] = E
[
sZi1{sZi≥−∆i}

]
+ E

[
−∆i1{sZi<−∆i/s}

]
= sϕ (−∆i/s)−∆iΦ (−∆i/s) = sf(−∆i/s).
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The first equality on the third line follows from noting that E [sZi] = 0, which allows us to

subtract sZi from both terms in the maximum in the second case to obtain E [max(−∆i,−sZi)],

which is equal to E [max(−∆i, sZi)] because of the equality in distribution between Zi and

−Zi. The first equality on the fourth line uses Remark 1. Combining this expression for

g(sei) with v(nei) = g(σ̃i(n)ei) shows the claimed expression for v(nei).

Proof of Theorem 1

Let ni > 0. By Proposition 1, ∂2

∂n2
i
v(niei) = ∂

∂ni
σ̃′i(ni)ϕ

(
−∆i

σ̃i(ni)

)
, which can be rewritten as

∂2

∂n2
i

v(niei) = ϕ

(
−∆i

σ̃i(ni)

)
1

σ̃i(ni)

[
σ̃′′i (ni)σ̃i(ni) +

(
∆iσ̃

′
i(ni)

σ̃i(ni)

)2
]

. (11)

Letting r = λi/σ
2
i , the expressions for the first and second derivatives of σ̃i from Lemma 2

in the appendix can be rewritten as,

σ̃′′i (ni)σ̃i(ni) = −σ2
i r

4
n−1

i (r + ni)
−3(r + 4ni),

σ̃′i(ni)/σ̃i(ni) =
r

2
n−1

i (r + ni)
−1.

This allows us to evaluate the term in the square brackets in (11) as

σ̃′′i (ni)σ̃i(ni) +

(
∆iσ̃

′
i(ni)

σ̃i(ni)

)2

=
r

4
n−2

i (r + ni)
−3
[
−4σ2

i n
2
i + r(∆i − σ2

i )ni + ∆2
i r

2
]
.

The quadratic expression −4σ2
i n

2
i + r(∆2

i − σ2
i )ni + ∆2

i r
2 has two roots,

r

8σ2
i

[
∆i − σ2

i ±
√

(∆2
i − σ2

i )
2 + 16σ2

i ∆
2
i

]
=

r

8σ2
i

[
∆i − σ2

i ±
√

∆4
i + 14σ2

i ∆
2
i + σ4

i

]
,

call them n+ and n−, where n+ is the larger of the two. Note that n− < 0 ≤ n+, where the

strict inequality n− < 0 is implied by σ2
i > 0. Then writing the quadratic as (ni−n+)(ni−n−),

we have

∂2

∂n2
i

v(niei) = ϕ

(
−∆i

σ̃i(ni)

)
1

σ̃i(ni)

r

4
n−2

i (r + ni)
−3(ni − n+)(ni − n−).

Since all the terms except (ni − n+) are strictly positive for non-negative ni, ni 7→ v(niei) is

convex on (0, n+] and concave on [n+,∞). The theorem follows from setting n∗ equal to n+.
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Proof of Proposition 2

Before proving Proposition 2, we state and prove the following lemma.

Lemma 5. For ∆ ∈ IR+ and any alternative i, the function

n, z 7→ ϕ(z) max

(
0,
−∆

σ̃i(n)
+ z

)
,

is log-concave on IR+ × IR, where log(0) is understood to be −∞.

Proof. First,

x 7→ log(max(0, x)) =

{
−∞ if x ≤ 0,

log(x) if x < 0,

is concave and non-decreasing.

Also, since n 7→ σ̃i(n) is concave (by Lemma 2) and strictly positive when n > 0, we have

that n 7→ −∆/σ̃i(n) is concave on IR++, and that

n 7→

{
− ∆

σ̃i(n)
if n > 0,

−∞ if n ≤ 0,

is concave on IR. Since the sum of two concave functions is concave,

n, z 7→

{
− ∆

σ̃i(n)
+ z if n > 0,

−∞ if n ≤ 0,

is concave on IR2. Thus, by the composition rules for concave functions (Boyd and Vanden-

berghe, 2004),

n, z 7→

{
log
(
max

(
0,− ∆

σ̃i(n)
+ z
))

if n > 0,

−∞ if n ≤ 0,

is concave on IR2 and hence also on IR+ × IR. �

We now prove Proposition 2.

Proof of Proposition 2. From the definition of v, (2), we have that

v(nei) = IE

[
max

(
µi + σ̃i(n)Zi, max

j 6=i
µj

)]
(12)
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where Zi is a standard normal random variable. Letting ∆ = |µi−maxj 6=i µj| we will see by

considering two cases that

v(nei) = IE [max (0,−∆ + σ̃i(n)Zi)] . (13)

In the first case, suppose µi ≤ maxj 6=i µj, and then (13) follows from (12) when we

bring maxj µj = maxj 6=i µj inside the expectation, and then inside both arguments of the

inner maximum. In the second case, suppose µi > maxj 6=i µj. Then subtracting and adding

µi + σ̃i(ni)Zi inside the expectation gives

v(nei) = IE

[
max

(
0, max

j 6=i
µj − (µi + σ̃i(n)Zi)

)]
+ IE [µi + σ̃i(n)Zi]−max

j
µj

= IE [max (0,−∆− σ̃i(n)Zi)] = IE [max (0,−∆ + σ̃i(n)Zi)] .

where in the second line we use that IE [σ̃i(n)Zi] = 0 and that µi −maxj µj = 0, and in the

third line we use that Zi is equal in distribution to −Zi. This shows (13).

Proceeding from (13), we have

v(nei) = σ̃i(n)IE

[
max

(
0,
−∆

σ̃i(n)
+ Zi

)]
.

The concavity of σ̃i shown in Lemma 2 implies that n 7→ log(σ̃i(n)) is also concave (Boyd

and Vandenberghe, 2004), and since

log(v(nei)) = log(σ̃i) + log

(
IE

[
max

(
0,
−∆

σ̃i(n)
+ Zi

)])
,

it is sufficient to show concavity on IR+ of

n 7→ log

(
IE

[
max

(
0,
−∆

σ̃i(n)
+ Zi

)])
.

To show this, we begin with the log-concavity on IR+ × IR of

n, z 7→ ϕ(z) max

(
0,
−∆

σ̃i(n)
+ z

)
,

as shown in Lemma 5. This implies that

IE

[
max

(
0,
−∆

σ̃i(n)
+ Zi

)]
=

∫
IR

ϕ(z) max

(
0,
−∆

σ̃i(n)
+ z

)
dz

is log-concave in n as the integral over IR of function that is log-concave in n and the integrand

z (Boyd and Vandenberghe, 2004). �
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Proof of Proposition 3

Let A =
{

n ∈ IRM
+ :

∑M
i=1 ni ≤ N

}
be the feasible set and let u∗ = maxn∈A u(n). Since u is

continuous and A is compact, there exists a point n ∈ A attaining the maximum.

Let n ∈ A be a point attaining the maximum, so u(n) = u∗, and define a point n′ by

n′1 = n1 + M −
∑

i ni and n′i = ni for i > 1. Then
∑

i n
′
i = M and the fact that u is

non-decreasing implies that u(n′) ≥ u(n) = u∗. We have shown that there is a point n′ ∈ A

attaining the maximum whose components sum to M . Let B be the set of all such points,

i.e., B = {n ∈ A : u(n) = u∗,
∑

i ni = M}. We have shown that B is nonempty.

For any point n ∈ B, let d(n) be the number of components ni equal to N/M . We will

show that there exists a point n∗ ∈ B with d(n∗) = M . This point must be (N/M, . . . , N/M),

and its membership in B will show that it attains the maximum.

Let n be a point in B. If d(n) = M , then the proof is complete. Otherwise, d(n) < M ,

and we will show that there exists another point n′ ∈ B with d(n′) ≥ d(n) + 1. Repeated

application of this inequality and the finiteness of M will then imply the existence of a point

n∗ in B with d(n∗) = M , completing the proof.

Suppose d(n) < M for some n ∈ B. Let j ∈ arg maxi ni and k ∈ arg mini ni. Since

d(n) 6= M and
∑

i ni = M , we must have nj > N/M and nk < N/M . Define a point

n′ by n′i = ni for each i 6= j, k and n′j = nk, n′k = nj, so n′ is identical to n except that

components j and k are switched. By symmetry of u we have u(n) = u(n′) = u∗. Also,∑
i n

′
i =

∑
i ni = M , so n′ ∈ B.

Let λ = ( N
M
−nk)/(nj−nk). This quantity is strictly positive and finite because N/M > nk

and nj > nk, and is strictly less than 1 because N/M < nj. Thus λ ∈ (0, 1). Define n′′ = λn+

(1−λ)n′. Concavity of u implies u(n′′) ≥ λu(n)+(1−λ)u(n′) = λu∗+(1−λ)u∗ = u∗. Thus n′′

attains the maximum. Additionally, n′′ ∈ IRM
+ and

∑
i n

′′
i = λ(

∑
i ni) + (1− λ)(

∑
i n

′
i) = M .

Thus, n′′ ∈ B.

We have n′′i = ni for each i 6= j, k. Since neither nj nor nk is equal to N/M , this

implies that for each component i ∈ {1, . . . ,M} with ni = N/M , we also have n′′i = N/M .

Furthermore, n′′j = λnj +(1−λ)n′j = λnj +(1−λ)nk =
[
( N

M
− nk)/(nj − nk)

]
(nj−nk)+nk =
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N/M . Thus, d(n′′) ≥ d(n) + 1.

Proof of Lemma 1

Without loss of generality we may assume that maxi µi = µ2. If this is not the case we may

simply rename the indices. Adding and subtracting µ2 + σ̃2(n2)Z2 to (4) provides

v(n) = IE
[
max

i
µi + σ̃i(ni)Zi

]
− µ2

=IE
[
(µ1 − µ2 + σ̃1(n1)Z1 − σ̃2(n2)Z2)

+
]
+ IE [µ2 + σ̃2(n2)Z2]− µ2

=IE
[
(µ1 − µ2 + σ̃1(n1)Z1 − σ̃2(n2)Z2)

+
]
.

Now, Z1 and Z2 are independent standard normal random variables, and so σ̃1(n1)Z1 −

σ̃2(n2)Z2 is also normal with mean 0 and variance σ̃2
1(n1) + σ̃2

2(n2) = s2(n), and so is equal

in distribution to s(n)Z. Thus,

v(n) = IE
[
(µ1 − µ2 + s(n)Z)+] = s(n)IE

[(
−|µ1 − µ2|

s(n)
+ Z

)+
]

= s(n)f

(
−|µ1 − µ2|

s(n)

)
.

where we recall from Proposition 1 that IE [(c + Z)+] = f(c) for c ∈ IR.

Proof of Proposition 4

Before proving Proposition 4, we state two lemmas. The first lemma defines a new quantity,

called Mill’s ratio (Ruben, 1963), which is the ratio R(z) = Φ(−z)/ϕ(z). The proof of this

first lemma is due to Laplace (Laplace, 1820).

Lemma 6 (Laplace). Mill’s ratio, R(z) = Φ(−z)/ϕ(z), is bounded above and below by

(z2 + 2)/(z3 + 3z) < R(z) < z/(z2 + 1).

Proof. The proof is due to Laplace (Laplace, 1820), as described in (Ruben, 1963). �

Lemma 7. f(−z)/ϕ(z) is strictly decreasing in z, and (z2+3)−1 < f(−z)/ϕ(z) < (z2+1)−1.

Proof. We begin by noting that the derivative of Mill’s ratio may be written

∂

∂z
R(z) =

∂

∂z

Φ(−z)

ϕ(z)
=
−ϕ(z)2 + zΦ(−z)ϕ(z)

ϕ(z)2
= −1 + z

Φ(−z)

ϕ(z)
= −1 + zR(z).
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Using this expression, we may differentiate f(−z)/ϕ(z) as

∂

∂z

f(−z)

ϕ(z)
=

∂

∂z
[1− zR(z)] = −R(z)− z

∂

∂z
R(z) = −R(z)(1 + z2) + z

which is strictly negative by the inequality R(z) > z/(z2 + 1) from Lemma 6. This shows

that z 7→ f(−z)/ϕ(z) is strictly decreasing.

Then, to show the bounds on f(−z)/ϕ(z) = 1− zR(z), we use the bounds on R(z) from

Lemma 6 to write

f(−z)/ϕ(z) > 1− z[z/(z2 + 1)] = 1/(z2 + 1),

f(−z)/ϕ(z) < 1− z[(z2 + 2)/(z3 + 3z)] = 1/(z2 + 3). �

We are now ready to prove Proposition 4.

Proof of Proposition 4. First consider the case ∆x = 0. In this case,

v(mex)/m = σ̃x(m)f(0)/m =
1√
2π

1

m

√
σ2

xm

(λx/σ2
x) + m

=
σx√
2π

1√
(λx/σ2

x)m + m2
.

This is a strictly decreasing function of m. This shows the result for the case ∆x = 0.

Now consider the case ∆x > 0. Differentiating v(mex)/m with respect to m at m > 0

provides

∂

∂m

v(mex)

m
= − 1

m2
v(mex) +

1

m

∂

∂m
v(mex)

= − 1

m2
v(mex) +

1

m
σ̃′i(m)ϕ

(
− ∆x

σ̃i(m)

)
= − 1

m2
σ̃x(m)f

(
−∆x

σ̃x(m)

)
+

1

m
ϕ

(
−∆x

σ̃x(m)

)
λx

2

σ̃x(m)

m(λx + σ2
xm)

= ϕ

(
−∆x

σ̃x(m)

)
σ̃x(m)

m2(λx + σ2
xm)

[
−ϕ

(
−∆x

σ̃x(m)

)−1

f

(
−∆x

σ̃x(m)

)(
λx + σ2

xm
)

+
λ

2

]
.

In the first line we have used the chain rule. In the second line we have used Proposition 1

to differentatiate v. In the third line we have used the expression from Proposition 1 for

v(mex) and Lemma 2 to differentiate σ̃x(m). In the fourth line we have rearranged terms.

Since ϕ
(
−∆x

σ̃x(m)

)
σ̃x(m)/m2 is strictly positive, the sign of ∂

∂m
v(mex)/m, i.e., whether it

is strictly positive, strictly negative, or 0, is equal to the sign of the expression inside the
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parentheses, which we will call h(m),

h(m) = −ϕ

(
−∆x

σ̃x(m)

)−1

f

(
−∆x

σ̃x(m)

)(
λx + σ2

xm
)

+
λ

2
. (14)

Since ϕ(−z)−1f(−z) is strictly decreasing in z by Lemma 7, and σ̃x(m) is strictly in-

creasing in m, both ϕ
(
−∆x

σ̃x(m)

)−1

f
(
−∆x

σ̃x(m)

)
and ϕ

(
−∆x

σ̃x(m)

)−1

f
(
−∆x

σ̃x(m)

)
(λx +σ2

xm) are strictly

increasing in m. Thus, h(m) is strictly decreasing in m.

Since h is continuous on IR++ with limm→0 h(m) = λ/2 > 0 (this limit relies on ∆x > 0)

and limm→∞ h(m) = −∞, h has a unique root in IR++. Call this root m∗. In addition,

both h(m) and ∂
∂m

v(mex) are strictly positive for m < m∗ and strictly negative for m < m∗.

Thus, m 7→ v(mex) is strictly unimodal with a unique maximum at m∗.

We now bound m∗ above and below. By Lemma 7 and (14), h(m) is bounded above by

h(m, 3) and below by h(m, 1), where h(m, a) is defined by

h(m, a) = − λx + σ2
xm

(∆x/σ̃x(m))2 + a
+

λx

2
.

Using the definition of σ̃x(m), we may write (∆x/σ̃x(m))2 as

(∆x/σ̃x(m))2 + a = ∆2
x

(λx/σ
2
x) + m

σ2
xm

+ al
(∆2

xλx/σ
2
x) + (∆2

x + σ2
xa)m

σ2
xm

,

and then substitute this into the definition of h(m, a) to obtain

h(m, a) = − (λx + σ2
xm)σ2

xm

(∆2
xλx/σ2

x) + (∆2
x + σ2

xa)m
+ a

=
−2σ4

xm
2 + λx(σ

2
x(a− 2) + ∆2

x)m + (∆2
xλ

2
x)/(σ

2
x)

2 [(∆2
xλx/σ2

x) + (∆2
x + σ2

xa)m]
.

Let h̃(m, a) = −2σ4
xm

2 + λx(σ
2
x(a − 2) + ∆2

x)m + (∆2
xλ

2
x)/(σ

2
x) be the numerator of this

expression, so that the sign of h(m, a) is the same as the sign of h̃(m, a).

This expression h̃(m, a) is quadratic in m and has roots[
λx(σ

2
x(a− 2) + ∆2

x)±
√

λ2
x(σ

2
x(a− 2) + ∆2

x)
2 + 8∆2

xλ
2
xσ

2
x

]
/4σ4

x.

For a ∈ {1, 3}, (a− 2)2 = 1 and these roots may be written[
(a− 2) + r ±

√
1 + [2(a− 2) + 8]r + r2

]
/4σ2

x.
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where r = ∆2
x/σ

2
x. Of these roots when a ∈ {1, 3}, only one is strictly positive and the other

is strictly negative. Let h̃+(a) denote the strictly positive root, so

h̃+(1) =
[
−1 + r +

√
1 + 6r + r2

]
/4σ2

x,

h̃+(3) =
[
1 + r +

√
1 + 10r + r2

]
/4σ2

x.

Since limm→0 h̃(m, a) = ∆2
xλ

2
x/σ

2
x > 0 and limm→∞ h̃(m, a) = −∞, h̃(m, a) is strictly

positive on [0, h̃+(a)) and strictly negative on (h̃+(a),∞). Furthermore, h(m) ≤ h(m, 3)

and sgn(h(m, 3)) = sgn(h̃(m, 3)) implies h̃(m) < 0 for m > h̃+(3), which implies m∗ ≤ h̃+(3).

Similarly, h(m) ≥ h(m, 1) and sgn(h(m, 1)) = sgn(h̃(m, 1)) implies h̃(m) > 0 for m < h̃+(1),

which implies m∗ ≥ h̃+(1). Thus, m∗ ∈ [h̃+(1), h̃+(3)]. �

Proof of Theorem 2

Using the chain rule, we compute the gradient and Hessian of v as

∇v(n) = ∇g(σ̃(n)) diag(∇σ̃(n)),

∇2v(n) = diag(∇σ̃(n))∇2g(σ̃(n)) diag(∇σ̃(n)) +∇2σ̃(n) diag(∇g(σ̃(n))). (15)

Consider the term ∇2σ̃(n) diag(∇g(σ̃(n))) from (15). Since ∇2σ̃(n) is a diagonal ma-

trix with entries σ̃′′i (ni), this term is a diagonal matrix with entries σ̃′′i (ni)
∂g
∂si

(σ̃(n)) =

−σ̃′i(ni)
2wi(ni)

∂g
∂si

(σ̃(n)), where we define wi(ni) = −σ̃′′i (ni)/σ̃
′
i(ni)

2. Defining a vector

w(n) = [wi(ni)]i, we then have an expression for the term in (15),

∇2σ̃(n) diag(∇g(σ̃(n))) = − diag(∇σ̃(n)) diag(w(n)) diag(∇g(σ̃(n))) diag(∇(σ̃(n))),

and (15) becomes

∇2v(n) = diag(∇σ̃(n))
[
∇2g(σ̃(n))− diag(w(n)) diag(∇g(σ̃(n)))

]
diag(∇σ̃(n)).

Thus, to show that ∇2v(n) is negative semi-definite and that v is concave at n, it is sufficient

to show that

H(n) = ∇2g(σ̃(n))− diag(w(n)) diag(∇g(σ̃(n)))
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is negative semi-definite.

From the expressions for σ̃′i and σ̃′′i in Lemma 2,

wi(ni) =
σi

λi

n
−1/2
i

(
λi

σ2
i

+ ni

)1/2(
λi

σ2
i

+ 4ni

)
.

Letting maxeig and mineig be functions that returns the maximum and minimum eigen-

values of a matrix respectively, we have from the fact that maxeig(A + B) ≤ maxeig(A) +

maxeig(B) that

maxeig(H(n)) ≤ maxeig(∇2g(σ̃(n)))−mineig(diag(w(n)) diag(∇g(σ̃(n)))).

Furthermore, mineig(diag(w(n)) diag(∇g(σ̃(n)))) = mini wi(ni)
∂g
∂si

(σ̃(n)).

Let Bε(σ) =
{
u ∈ IRM : |ui − σi| < ε

}
, and let ε > 0 be such that constants b and c

defined by

b = sup
u∈Bε(σ)

maxeig(∇2g(u)), c = min
i

inf
u∈Bε(σ)

∂g

∂si

(u)

satisfy b < ∞ and c > 0. That such a strictly positive ε exists is guaranteed by the continuity

of maxeig, the continuity of ∇2g and ∇g (Lemma 4), and the fact due to Lemma 3 that

∇g(σ) � 0. Here, � indicates componentwise inequality, so a � a′ means ai > a′i for each i.

Then let N ∈ IRM
+ be such that σ̃(N) ∈ Bε(σi). Such an N exists because limNi→∞ σ̃i(Ni) =

σi. For this N , we also have σ̃(n) ∈ Bε for all n � N because σ̃ is increasing in each com-

ponent. Thus, for all n � N , maxeig(∇2g(σ̃(n))) ≤ b, mini
∂g
∂si

(σ̃(n)) ≥ c, and

maxeig(H(n)) ≤ b−min
i

cwi(ni). (16)

Since limni→∞ wi(ni) = ∞ for each i, there exists an N∗ � N such that mini wi(ni) ≥ b/c

for all n � N∗. From (16), we then have that maxeig(H(n)) ≤ 0 for all n � N∗.

Proof of Theorem 3

Optimality at N = 1 follows from noting that the decision of the KG policy is identical to

that of the KG(*) policy when n = N − 1. The decision of the KG policy is shown to be

optimal when N = 1 in Frazier et al. (2008).
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To show optimality in the limit as N → ∞, we first augment our existing notation.

To indicate the dependence upon the posterior distribution we write v(n; µ, σ) instead of

v(n) to indicate the single-stage value of the allocation n under the posterior distribution

given by µ ∈ IRM and σ ∈ IRM
+ . We also let νKG

x (µ, σ) = v(ex; µ, σ) and ν
KG(∗)
x (µ, σ) =

max1≤m≤N−n v(mex; µ, σ)/m be the KG and KG(*) factors, respectively, for measuring alter-

native x. Thus, the KG policy measures arg maxx νKG
x (µ, σ), and the KG(*) policy measures

arg maxx ν
KG(∗)
x (µ, σ),

We now provide upper and lower bounds on ν
KG(∗)
x (µ, σ). By noting that m = 1 is in the

set of m over which the maximum in the definition of ν
KG(∗)
x (µ, σ) is taken, we obtain the

lower bound,

νKG(∗)
x (µ, σ) ≥ v(ex; µ, σ) = νKG

x (µ, σ).

To provide an upper bound, we note that v(mex; µ, σ) is bounded above by

ux(µ, σ) = σxf(−|µx −maxx′ 6=x µx′|/σx). This can be seen by noting that s 7→ sf(−a/s) is

increasing in s for any a ≥ 0, and σ̃x(m) ≤ σx. Then, letting m∗ be a maximand in the

definition of ν
KG(∗)
x (µ, σ), and noting m∗ ≥ 1,

νKG(∗)
x (µ, σ) = v(m∗ex; µ, σ)/m∗ ≤ v(m∗ex; µ, σ) ≤ ux(µ, σ).

As shown in Frazier and Powell (2009) (Theorem 1 and Lemmas 5 and 6), a sufficient

condition for optimality as N → ∞ is that, for each (µ, σ) ∈ IRM × IRM
+ satisfying σ 6= 0,

we have a corresponding set U containing (µ, σ) that is open in IRM × IRM
+ and on which the

policy only measures alternatives x with σx > 0.

To show that this sufficient condition is met, we fix µ ∈ IRM and σ ∈ IRM
+ with σ 6= 0.

We define A = {x : σx = 0}, and

U =
{
µ′, σ′ : νKG

x (µ′, σ′) > ux′(µ
′, σ′) ∀x 6∈A, x′ ∈ A

}
.

Note that U = IRM × IRM
+ when A = ∅. We check that U satisfies the sufficient conditions.

First, the upper and lower bounds for νKG(∗) imply for all x ∈ A, x′ 6∈A and (µ′, σ′) ∈ U that

νKG(∗)
x (µ′, σ′) ≥ νKG

x (µ′, σ′) > ux′(µ
′, σ′) ≥ νKG

x′ (µ′, σ′).
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Since A has a non-empty complement (although it may be empty itself), this implies that

the KG(*) policy measures outside of A for each (µ′, σ′) ∈ U .

Second, the upper and lower bounds for νKG(∗), together with the facts νKG
i (µ, σ) = 0

and ui(µ, σ) = 0 iff σi = 0 iff i ∈ A, imply for all x ∈ A and x′ 6∈A that

νKG(∗)
x (µ, σ) ≥ νKG

x (µ, σ) > 0

ν
KG(∗)
x′ (µ, σ) ≤ νKG

x (µ, σ) = 0.

The inequality ν
KG(∗)
x′ (µ, σ) ≥ 0 then shows ν

KG(∗)
x′ (µ, σ) = 0. Thus, ν

KG(∗)
x (µ, σ) > 0 =

ν
KG(∗)
x′ (µ, σ), and (µ, σ) ∈ U .

Third and finally, both νKG
x and ux are continuous functions, and so U is an open set.

Thus, U satisfies the sufficient conditions from Frazier and Powell (2009).
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