
Information collection on a graph

Ilya O. Ryzhov Warren Powell

February 10, 2010

Abstract

We derive a knowledge gradient policy for an optimal learning problem on a graph, in which
we use sequential measurements to refine Bayesian estimates of individual edge values in order
to learn about the best path. This problem differs from traditional ranking and selection, in that
the implementation decision (the path we choose) is distinct from the measurement decision (the
edge we measure). Our decision rule is easy to compute, and performs competitively against
other learning policies, including a Monte Carlo adaptation of the knowledge gradient policy for
ranking and selection.

1 Introduction

Consider a path-finding problem on a graph in which the lengths or values of the edges are random,

and their distributions are unknown. We begin with independent normal Bayesian priors for the

edge values, and we can obtain noisy measurements of the values which we can use to refine our

estimates through Bayesian updating. We are allowed to make N measurements of individual

edges, and we can measure any edge at any time, regardless of its location in the graph. After

the measurements are complete, we must make a guess as to the best path. Our problem is to

sequentially determine the best edges to evaluate, where we can make each choice given what we

have learned from prior measurements.

This problem contains an important distinction between measurement and implementation de-

cisions. While we measure, we collect information about individual edges. However, our overarching

goal is to find a path. We must choose the edges we measure in such a way as to collect the most

information about the graph as a whole. We are not constrained by the graph structure when choos-

ing what to measure, in the sense that we can always measure any edge at any time. Nonetheless,

we must still keep the graph structure in mind when choosing edges, because it is relevant to the

final implementation decision.

1

The distinction between measurement and implementation has not been considered in earlier

work on optimal learning. A major goal of this work is to open up new avenues for optimal learning

in the context of operations research problems (e.g. on graphs). Three possible examples of graph

problems where a learning component may come into play are the following:

1. PERT/CPM project management. A complex project can be represented as a graph in which

edges correspond to tasks. Suppose that there are multiple sequences of tasks that will enable

us to complete the project objectives; every such sequence is a particular path in the graph.

We wish to find the sequence that can be completed in the shortest possible time. We can

change our estimate of the time required to complete a task by analyzing historical data from

previous projects involving that task. We do not have time to analyze all available records

(they may be expensive to access), and can only perform a small number of historical studies.

2. Biosurveillance. We are planning a route for a single medical specialist through a region

in a developing country. The route should maximize the specialist’s total effectiveness in

the region. Before committing to a route, we can make contact with hospitals in the region

and ask for recent medical data that could change our beliefs about the specialist’s potential

effectiveness there. A hospital can be modeled as a pair of nodes connected by a single edge,

where the value of the edge is a measure of the specialist’s effectiveness. Each contact requires

money and time to analyze the data, so the total number of hospitals we can visit is limited.

Thus, the goal is to find the path with the highest value given a fixed number of edges.

3. Defense of intellectual property. Certain stores may be unwittingly selling counterfeit products

such as printer ink. The ink manufacturer has an estimate of how much counterfeit ink is

sold in each store, and wishes to plan a route for a detective to investigate a number of the

stores. The estimates can be improved by ordering samples of ink from individual stores.

This incurs inventory, transportation and storage costs, so the number of orders is limited.

Again, we want to maximize the value of a path with a fixed number of edges.

Optimal information collection has a long history in the context of simple problems such as

multi-armed bandits (see e.g. Gittins (1989)) and ranking and selection. A general overview of

ranking and selection can be found in Bechhofer et al. (1995) and Kim & Nelson (2006), while Law &

Kelton (1991) and Goldsman (1983) provide a simulation-oriented perspective. In these problems,

there is a finite set of alternatives with unknown values, and the goal is to find the highest value.

2

We can improve our estimates of the values by sequentially measuring different alternatives. In the

problem of learning on a graph, we also have a finite set of edges that can be measured, but we

are not simply looking for the best edge. We learn by measuring individual edges, but we use the

information we collect to improve our ability to find a path.

Stochastic shortest path problems have also been widely studied. An overview is available in

Snyder & Steele (1995). However, many of these studies assume that the edge values have known

distributions, for example the exponential distribution (Kulkarni (1986), Peer & Sharma (2007)).

The work by Frieze & Grimmett (1985) describes a probabilistic shortest-path algorithm for more

general classes of non-negative distributions, and analyzes the length of the shortest path in the

special case of uniformly distributed edge values. Correlations among the edge values have also been

studied by Fan et al. (2005), again with the assumption of known distributions. For online graph

problems, in which we learn in the process of traversing the graph, methods such as Q-learning by

Watkins & Dayan (1992) use stochastic approximation to estimate unknown values, while Bayesian

approaches have been proposed by Dearden et al. (1998) and Duff & Barto (1996).

We build on a class of approximate policies originally developed for ranking and selection,

where each measurement maximizes the value of information that can be collected in a single time

step. This technique was first proposed by Gupta & Miescke (1996) for ranking and selection

with independent Gaussian priors, and subsequently expanded in the work on Value of Information

Procedures (VIP) by Chick & Inoue (2001a) and Chick & Inoue (2001b). Additional theoretical

properties were established by Frazier et al. (2008) for the knowledge gradient (KG) policy. A KG-

like methodology was also applied to other learning problems: by Chick et al. (2009), for ranking

and selection with unknown measurement noise; by Frazier et al. (2009), for ranking and selection

with correlated Gaussian priors; and by Ryzhov et al. (2009) and Ryzhov & Powell (2009), for the

online multi-armed bandit problem.

In addition to their theoretical properties, KG-type policies have been shown to perform well

experimentally. In the offline setting, thorough empirical studies were performed by Inoue et al.

(1999) and Branke et al. (2007). In the online case, the variant of KG studied in Ryzhov et al.

(2009) performs competitively even against the known, optimal Gittins policy for multi-armed

bandits, while being much easier to compute than Gittins indices. These features make KG policies

attractive for information collection problems.

This paper makes the following contributions: 1) We present a new class of optimal learning

3

problems beyond the scope of the literature on ranking and selection and multi-armed bandits. In

this problem class, our goal is to solve an optimization problem on a graph with unknown edge

values. We can improve our estimate of the optimal solution by making sequential measurements of

individual edges. 2) We show that the knowledge gradient concept can be applied to this problem

class, while retaining its theoretical and computational advantages. 3) We propose an alternate

learning policy that treats the problem as a ranking and selection problem, using Monte Carlo

sampling to avoid having to enumerate all paths. 4) We conduct an experimental study comparing

these and other learning policies on a diverse set of graph topologies. The study indicates that the

KG policy is effective for graphs where there are many paths that could potentially be the best, and

the Monte Carlo policy is effective when we are allowed to make a large number of measurements.

Section 2 lays out a mathematical model for information collection on a graph. In Section 3,

we derive the exact KG decision rule for an acyclic graph problem, and approximate it for general

graphs. We also show that the KG policy is asymptotically optimal as the number of measurements

becomes large. In Section 4, we give a decision rule for the Monte Carlo KG policy. Finally, we

present numerical results comparing the performance of KG to existing learning policies.

2 Mathematical model

Consider a graph described by a finite set S of nodes and a set E ⊆ S×S of directed edges. Every

edge (i, j) ∈ E has a value µij . For notational simplicity, and without loss of generality, we assume

that every path must start at some fixed origin node a ∈ S, and that every path must contain

exactly T edges. We wish to find the path with the largest total value

max
p

∑
(i,j)∈E

δpijµij (1)

where p denotes a path that starts at a and contains T edges, and δpij is an indicator function that

equals 1 if the edge (i, j) appears in the path p, and zero otherwise. Throughout our analysis, we

assume that the graph is acyclic, so any edge can appear at most once in a given path.

The best path can be found using Bellman’s equation for dynamic programming:

Vt (i) = max
j
µij + Vt+1 (j) , (2)

VT (i) = 0. (3)

4

These quantities are defined for each i ∈ S and each t = 0, ..., T . Thus, Vt (i) is the length of the

best path that starts at node i and contains T − t edges. It follows that V0 (a) is the optimal value

of the problem (1). The actual edges that make up the best path can be found by keeping track of

the nodes j that achieve the maximum in (2) for each i.

If the values µij are known, (2) gives us the exact optimal solution to (1). If the values are

random with known distribution, (2) still solves the problem in the sense that it gives us the path

with the highest expected total value. However, in our work, the distributions of the values are

unknown, and our beliefs about them change as we learn more about them.

Because of this uncertainty, the problem consists of two phases. In the first phase, we will make

sequential measurements of individual edges, in order to improve our estimate of the solution to

(2). This is called the learning phase of the problem. After the measurements have been completed,

we will enter the implementation phase, where we will choose the path that we think is the best,

based on all the measurements we made in the learning phase. There is a clear distinction between

these two stages. When we learn, we make measurements of individual edges; when we implement,

we choose a path. In this section, we will describe the dynamics of the learning phase and the way

in which our beliefs change when we measure an edge. The issue of how to choose which edge to

measure will be discussed later in Section 3.

2.1 Learning about individual edges

Suppose that the mean values µij are unknown, but we can estimate them by measuring individual

edges. When we choose to measure edge (i, j) ∈ E, we observe a random value µ̂ij , which follows

a Gaussian distribution with mean µij and variance σ2
ε . We assume that the measurement error

σ2
ε is known, and we sometimes use the notation βε = σ−2

ε to refer to the measurement precision.

Because µij is itself unknown, we assume that µij ∼ N
(
µ0
ij ,
(
σ0
ij

)2
)

, where µ0
ij and σ0

ij represent

our prior beliefs about µij . We also assume that the values of the edges are mutually independent,

conditioned on µij , (i, j) ∈ E.

We learn about the graph by making N sequential measurements, where N is given. One

measurement corresponds to exactly one edge. Any edge can be measured at any time, regardless

of graph structure. Let Fn be the sigma-algebra generated by our choices of the first n edges, as

well as the observations we made on those edges. We say that something happens “at time n” if it

5

happens immediately after we have made exactly n measurements. Then we can define

µnij = IEn (µij)

where IEn (·) = IE (· |Fn). Similarly, we let
(
σnij

)2
be the conditional variance of µij given Fn,

with βnij =
(
σnij

)−2
being the conditional precision. Thus, at time n, we believe that µij ∼

N
(
µnij ,

(
σnij

)2
)

. Our beliefs evolve according to the Bayesian updating equation

µn+1
ij =

{
βnijµ

n
ij+βεµ̂

n+1
ij

βnij+βε
if (i, j) is the (n+ 1)st edge measured

µnij otherwise.
(4)

The values of the edges are independent, so we update only our beliefs about the edge that we have

just measured. The quantity µ̂n+1
ij is the random value observed by making that measurement.

The precision of our beliefs is updated using the equation

βn+1
ij =

{
βnij + βε if (i, j) is the (n+ 1)st edge measured
βnij otherwise.

(5)

We use the notation µn =
{
µnij | (i, j) ∈ E

}
and βn =

{
βnij | (i, j) ∈ E

}
. We also let

(
σ̃nij
)2 = V ar

(
µn+1
ij |F

n
)

= V ar
(
µn+1
ij |F

n
)
− V ar

(
µnij |Fn

)
(6)

be the reduction in the variance of our beliefs about (i, j) that we achieve by measuring (i, j) at

time n. It can be shown that

σ̃nij =

√(
σnij

)2
−
(
σn+1
ij

)2
=

√
1
βnij
− 1
βnij + βε

.

It is known (for instance, from DeGroot (1970)), that the conditional distribution of µn+1
ij given

Fn is N
(
µnij ,

(
σ̃nij

)2
)

. In other words, given Fn, we can write

µn+1
ij = µnij + σ̃nij · Z (7)

where Z is a standard Gaussian random variable. It follows that IEn
(
µn+1
ij

)
= µnij .

Our beliefs about the values after n measurements are completely characterized by µn and βn.

We can define a knowledge state

sn = (µn, βn)

6

to completely capture all the information we have at time n. If we choose to measure edge (i, j) ∈ E

at time n, we write

sn+1 = KM
(
sn, (i, j) , µ̂n+1

ij

)
where the transition function KM is described by (4) and (5).

To streamline our presentation, the measurement error σ2
ε is taken to be constant for all edges,

similar to Frazier et al. (2008). However, we can allow the measurement error to be edge-dependent

without significant changes in our analysis. If we suppose that µ̂n+1
ij ∼ N

(
µij , λ

2
ij

)
, we obtain the

same model, but with σ2
ε and βε replaced by λ2

ij and λ−2
ij in (4), (5) and (6). Except for the

modifications in these equations, all theoretical and computational results presented in this paper

remain unchanged in the case where the measurement error varies across edges.

The validity of our assumption of Gaussian priors and measurements is problem-dependent. If

the measurement is done through statistical sampling with a large enough sample size, the Gaussian

distribution is a good approximation. The method of batch means (see e.g. Schmeiser (1982), Kim

& Nelson (2007)) can be used to design the observations to mitigate the non-normality of the

underlying data. Additionally, Hoff (2009) states, based on a result by Lukacs (1942), that a

Gaussian sampling model can be used if we believe the sample mean to be independent from the

sample variance (in particular, if the sample variance is known).

A Gaussian prior may work well even when the measurements are non-Gaussian. Gelman et

al. (2004) suggests that a unimodal and “roughly symmetric” posterior can be approximated by

a Gaussian distribution. Under certain conditions, the posterior is asymptotically normal as the

number of measurements becomes large (see Bernardo & Smith (1994)). In short, a Gaussian

sampling model is appropriate for many learning problems.

2.2 Estimating the length of the best path with dynamic programming

At time n, our beliefs about the path that solves (2) are expressed using Bellman’s equation, with

the unknown values µ replaced by the most recent beliefs µn:

V n
t (i; sn) = max

j
µnij + V n

t+1 (j; sn) , (8)

V n
T (i; sn) = 0. (9)

7

As with (2), we compute V n
t for all i and t, from which we can construct the path that we believe

to be the best at time n. It is important to understand the distinction between (2) and (8). The

quantity V0 (a) represents the true length of the true best path. The quantity V n
0 (a; sn) represents

our time-n beliefs about which path is the best, and thus depends on sn. The path that solves (8)

is our best time-n guess of the path that solves (2).

Intuitively, the solution to (8) should be worse than the expected solution to (2). In other

words, there is a penalty for not having perfect information. The following proposition formalizes

this idea. The proof uses an induction argument, and can be found in the Appendix.

Proposition 2.1. For all i ∈ S, for all t = 0, ..., T , and for all knowledge states sn,

V n
t (i; sn) ≤ IEnVt (i) almost surely. (10)

We can also make a time-n estimate of the length of a fixed path p:

V p,n
t (i; sn) = µnij + V p,n

t+1 (j; sn) , where j = xp (i) ,

V p,n
T (i; sn) = 0.

Here, xp (i) denotes the node that follows node i in path p. The true length of path p is given by

V p
t (i) = µij + V p

t+1 (j) , where j = xp (i) ,

V p
T (i) = 0.

From these equations, it is clear that IEnV p
t (i) = V p,n

t (i; sn) for fixed p.

Our use of the index t is a technical convention of dynamic programming. Bellman’s equation

constructs the best path one edge at a time, and the index t merely serves to indicate how many

edges in the path have already been built. It does not have any bearing on how many edges we

have measured in the learning problem. For convenience, we will use the notation

V n (sn) = V n
0 (a; sn) ,

V p,n (sn) = V p,n
0 (a; sn) ,

to refer to our time-n estimates, dropping the index t. Similarly, we use V and V p to denote V0 (a)

and V p
0 (a).

8

We can now describe our objective function. In the learning phase of our problem, we will

choose a policy π that selects an edge for us to measure in every time step. In the second phase, we

will simply solve (8) using our final estimates µN to find the path that seems to be the best, based

on all the measurements we made in the first phase. This is the intuitive choice of implementation

decision. If we cannot make any more measurements, the best we can do is to solve Bellman’s

equation using the information we have accumulated.

The measurement policy π can be viewed as a collection of decision rules Xπ,0, ..., Xπ,N−1, where

each Xπ,n is a function mapping the knowledge state sn to an edge in E. The time-n decision rule

uses the most recent knowledge state sn to make a decision. The main challenge in our problem is

to choose a measurement policy π for selecting individual edges in the first phase, and our objective

function can be written as

sup
π

IEπV N
(
sN
)

. (11)

Our implementation decision is thus fixed in the objective function. We choose measurements in the

learning phase to maximize the expected value of the path that we will choose in the implementation

phase.

Remark 2.1. By taking an expectation of both sides of (10), we find that, for any policy π,

IEπV N
(
sN
)
≤ IEπV , where V = V0 (a) is the true length of the path that solves (2). Since the true

edge values µ do not depend on the policy π, it follows that IEπV = IEV for any π, hence

IEπV N
(
sN
)
≤ IEV

for all π. Thus, Proposition 2.1 gives us a global upper bound on the objective value achieved by

any measurement policy.

Note that we use a time-staged graph model, where we are always looking for a path with T

edges. This is convenient for modeling, because it enables us to easily write the solution to the path

problem using Bellman’s equation. However, the KG policy that we derive in Section 3 does not

require a time-staged graph, and can be used for many different path problems. For example, if our

graph has both a source and a destination node, we would simply let V n (sn) be the time-n estimate

of the best path from the source to destination. We are also not bound to the maximization problem

in (1). For a shortest-path problem, the derivation in Section 3 will be identical, except V n (sn)

will be obtained using a shortest-path algorithm. In fact, our computational study in Section 5

solves shortest-path problems on graphs with sources and sinks.

9

3 The knowledge gradient policy

The remainder of this paper will discuss the problem of how to choose the measurement policy

π in (11). Finding the optimal measurement policy is an intractable problem, but we propose a

heuristic policy called the knowledge gradient policy, which yields a computable algorithm.

Suppose that we are at time n, in knowledge state sn. Let pn be the path that achieves V n (sn).

Thus, pn is the path that we believe is the best, given our most recent information, and V n (sn) is

our estimate of its length. The knowledge gradient policy is based on the idea first developed by

Gupta & Miescke (1996) and later studied by Chick & Inoue (2001a), Chick & Inoue (2001b) and

Frazier et al. (2008) for the ranking and selection problem. This idea can be stated as “choosing

the measurement that would be optimal if it were the last measurement we were allowed to make.”

If we are at time N − 1, with only one more chance to measure, the best choice is given by

arg max
(i,j)∈E

IEN−1
ij V N

(
sN
)

= arg max
(i,j)∈E

IEN−1
ij

(
V N

(
sN
)
− V N−1

(
sN−1

))
where IEN−1

ij observes all the information known at time N − 1, as well as the choice to measure

(i, j) at time N − 1. We bring V N−1
(
sN−1

)
into the maximum because this quantity is known at

time n, and does not depend on the choice of measurement.

If we always assume that we have only one more chance to measure, at every time step, then

the decision rule that follows from this assumption is

XKG,n (sn) = arg max
(i,j)∈E

IEnij
(
V n+1

(
sn+1

)
− V n (sn)

)
. (12)

In words, we measure the edge that maximizes the expected improvement in our estimate of the

length of the best path that can be obtained from a single measurement. The term “knowledge

gradient” is due to (12) being written as a difference.

Remark 3.1. By definition, the KG policy is optimal for N = 1. In this case, a measurement

policy consists of only one measurement, and (11) becomes

max
(i,j)∈E

IE0
ijV

1
(
s1
)

.

Below, we find the value of a single measurement, and present the knowledge gradient policy.

10

3.1 The effect of one measurement

In order to compute the right-hand side of (12), we consider the effects of measuring one edge on

our beliefs. Fix an edge (i, j) ∈ E and let Aij =
{
p : δpij = 1

}
be the set of all paths containing

(i, j). Then Acij is the set of all paths not containing that edge. Now define a path pnij as follows.

If pn ∈ Aij , let

pnij = arg max
p∈Acij

V p,n (sn) .

On the other hand, if pn ∈ Acij , let

pnij = arg max
p∈Aij

V p,n (sn) .

Thus, if (i, j) is already in the best time-n path, then pnij is the best path that does not contain

this edge. If (i, j) is not part of the path we believe to be the best, then pnij is the best path that

does contain that edge. Thus, by definition, pnij 6= pn.

Proposition 3.1. If we measure edge (i, j) at time n, the path that achieves V n+1
(
sn+1

)
will be

either pn or pnij.

Proof: Suppose that pn ∈ Aij . By definition, pn = arg maxp V p,n (sn), so in particular

pn = arg max
p∈Aij

V p,n (sn) .

Depending on the outcome of our measurement of (i, j), our beliefs about all paths in Aij will

change, but they will all change by the same amount µn+1
ij − µnij . This is because we assume that

the graph contains no cycles, so all paths in Aij contain only one copy of (i, j). Therefore,

pn = arg max
p∈Aij

V p,n+1
(
sn+1

)
for every outcome. Thus, pn is the only path in Aij that can be the best time-(n+ 1) path. Our

beliefs about the paths in Acij will remain the same, because none of those paths contain (i, j), and

our beliefs about the other edges do not change as a result of measuring (i, j). Therefore,

arg max
p∈Acij

V p,n+1
(
sn+1

)
= arg max

p∈Acij
V p,n (sn) = pnij

for every outcome. Thus, pnij is the only path in Acij that can be the best time-(n+ 1) path. It

follows that pn and pnij are the only two paths that can be the best at time n+ 1.

11

If pn ∈ Acij , the argument is the same. By definition, pn is the best path, so

pn = arg max
p∈Acij

V p,n (sn) .

Our beliefs about the paths in Acij do not change after measuring (i, j), so pn will still be the best

path in Acij at time n+ 1. Our beliefs about all paths in Aij will change by the same amount after

the measurement, so pnij will still be the best path in Aij at time n+ 1. Therefore, pn and pnij are

again the only two paths that can be the best at time n+ 1. �

Because pn and pnij figure prominently in the KG policy, we must remark on their computation.

We can obtain pn via (8). If pn ∈ Aij , then pnij can be found by solving a modified version of (8)

with µnij set to −∞. This ensures that we obtain a path in Acij . If pn 6∈Acij , we can again solve a

modified version of (8) with µnij chosen to be some large number, for instance the sum of the other

µn values. This will construct a path that includes (i, j), with the other edges chosen optimally.

3.2 Computation of the KG policy

Define a function f (z) = zΦ (z) + φ (z), where φ and Φ are the standard Gaussian pdf and cdf,

respectively. Also, for notational convenience, we define V n
ij (sn) = V pnij ,n (sn). This quantity is our

time-n estimate of the length of the path pnij defined in Section 3.1. With these definitions, we can

present the main result of this section, namely the exact solution of the expectation in (12).

Theorem 3.1. The KG decision rule in (12) can be written as

XKG,n (sn) = arg max
(i,j)∈E

νKG,nij (13)

where

νKG,nij = σ̃nij · f

(
−
V n (sn)− V n

ij (sn)
σ̃nij

)
. (14)

Proof: As in the proof of Proposition 3.1, we consider two cases, one where δp
n

ij = 1 and one where

δp
n

ij = 0. The two cases differ slightly, but in the end we derive one unified formula for νKG,nij .

Case 1: pn ∈ Acij . Suppose that the edge (i, j) is not currently part of the best path. Nonethe-

less, we can potentially gain by measuring it. From Proposition 3.1 we know that only pn or pnij

can be the best path at time n+ 1. Observe that pnij will become the best path (beating pn) if

µn+1
ij > µnij +

(
V n (sn)− V n

ij (sn)
)

,

12

that is, our beliefs about (i, j) increase by an amount that is large enough to make up the time-n

difference between pn and pnij . Note that V n (sn)− V n
ij (sn) ≥ 0 by assumption, because V n (sn) is

the time-n length of the best time-n path. For all other outcomes of the measurement (that is, if

our beliefs about (i, j) do not increase enough), pn will continue to be the best path at time n+ 1.

The one-period increase in our beliefs about the length of the best path, denoted by V n+1
(
sn+1

)
−

V n (sn), depends on the outcome of the measurement in the following fashion:

V n+1
(
sn+1

)
− V n (sn)

=

{
µn+1
ij − µnij −

(
V n (sn)− V n

ij (sn)
)

if µn+1
ij − µnij ≥ V n (sn)− V n

ij (sn)
0 otherwise.

(15)

The shape of this function can be seen in Figure 1(a). Then, the knowledge gradient obtained by

measuring (i, j) is

νKG,nij = IEnij
(
V n+1

(
sn+1

)
− V n (sn)

)
= IEnij

[(
µn+1
ij − µnij −

(
V n (sn)− V n

ij (sn)
))
· 1{µn+1

ij −µnij≥V n(sn)−V nij (sn)}
]

.

Equation (7) tells us that, given Fn, µn+1
ij ∼ N

(
µnij ,

(
σ̃nij

)2
)

. Thus,

νKG,nij = σ̃nij · IE

(
Z · 1{

Z≥
V n(sn)−V n

ij
(sn)

σ̃n
ij

}
)

−
(
V n (sn)− V n

ij (sn)
)
· P

(
Z ≥

V n (sn)− V n
ij (sn)

σ̃nij

)

where Z ∼ N (0, 1). It follows that

νKG,nij = σ̃nij · φ

(
−
V n (sn)− V n

ij (sn)
σ̃nij

)

−
(
V n (sn)− V n

ij (sn)
)
· Φ

(
−
V n (sn)− V n

ij (sn)
σ̃nij

)

= σ̃nij · f

(
−
V n (sn)− V n

ij (sn)
σ̃nij

)
. (16)

Case 2: pn ∈ Aij . If we measure an edge that is part of the best path, our estimate of the best

path can become better or worse, depending on the outcome of the measurement. Then pnij , the

13

(a) Case 1: pn ∈ Ac
ij . (b) Case 2: pn ∈ Aij .

Figure 1: Structure of the one-period increase in our beliefs about the best path.

best path not containing that edge, will become the best path at time n+ 1 if

µn+1
ij < µnij −

(
V n (sn)− V n

ij (sn)
)

,

that is, if our beliefs about (i, j) drop far enough. In this case, the one-period improvement is given

by

V n+1
(
sn+1

)
− V n (sn)

=

{
−
(
V n (sn)− V n

ij (sn)
)

if µn+1
ij − µnij < −

(
V n (sn)− V n

ij (sn)
)

µn+1
ij − µnij otherwise.

(17)

The shape of this function is shown in Figure 1(b). The knowledge gradient is

νKG,nij = IEnij
(
V n+1

(
sn+1

)
− V n (sn)

)
= −

(
V n (sn)− V n

ij (sn)
)
· P
(
µn+1
ij − µnij < −

(
V n (sn)− V n

ij (sn)
))

+IEnij

[(
µn+1
ij − µnij

)
· 1{µn+1

ij −µnij≥−(V n(sn)−V nij (sn))}
]

.

As before, µn+1
ij ∼ N

(
µnij ,

(
σ̃nij

)2
)

given Fn. Therefore,

νKG,nij = −
(
V n (sn)− V n

ij (sn)
)
· P

Z < −

(
V n (sn)− V n

ij (sn)
)

σ̃nij

+σ̃nij · IEnij

Z · 1{
Z≥−

(V n(sn)−V n
ij

(sn))
σ̃n
ij

}

14

which becomes

νKG,nij = −
(
V n (sn)− V n

ij (sn)
)
· Φ

(
−
V n (sn)− V n

ij (sn)
σ̃nij

)

+σ̃nij · φ

(
−
V n (sn)− V n

ij (sn)
σ̃nij

)
.

This is the same expression as in (16). �

The right-hand side of (14) provides us with a simple, easily computable formula for the knowl-

edge gradient. The formula resembles an analogous formula for ranking and selection, examined by

Frazier et al. (2008). However, (14) is designed specifically for the graph problem; to run the KG

policy at time n, we are required to solve one shortest-path problem for each edge, to find V n
ij (sn).

Equations (13) and (14) give an exact computation of (12) when the graph contains no cycles.

If we allow cycles in the graph, then any path that is the best time-n path containing k copies

of (i, j), for any k = 0, 1, ..., can become the best time-(n+ 1) path after measuring (i, j). It is

difficult to enumerate all such paths; if the graph has cycles, we suggest (14) as an approximation

to this difficult computation. For shortest-path problems, however, no path with a positive-cost

cycle can ever be the shortest, so (13) and (14) closely approximate (12) as long as negative-cost

cycles occur with negligible probability.

3.3 Asymptotic optimality of the KG policy

Define the risk function R (p) = V − V p to represent the loss incurred by choosing p instead of the

true best path at time N . In this section, we show that the KG policy is asymptotically optimal

in the sense of Frazier & Powell (2009), that is,

lim
N→∞

IE

(
min
p

IENR (p)
)

= IE

(
min
p

IE (R (p) |µ)
)

. (18)

In words, the minimum-risk decision after N measurements will attain the minimum risk possible

if all values are perfectly known, in the limit as N → ∞. The crucial point is that the KG policy

is the only learning policy that is optimal for both N = 1 (in the sense of Remark 3.1) and for

N →∞ (in the sense of (18). This combination of myopic and asymptotic optimality suggests that

KG could also perform well for finite measurement budgets.

All expectations in this discussion are under the KG policy; we drop the policy name from IEKG

15

for notational convenience. Observe that

lim
N→∞

IE

(
min
p

IENR (p)
)

= lim
N→∞

IE

(
min
p

IEN (V − V p)
)

= lim
N→∞

IE

(
IENV + min

p

(
−IENV p

))
= lim

N→∞
IEV −max

p
V p,N

(
sN
)

= IEV − lim
N→∞

IEV N
(
sN
)

.

Using similar calculations, it can be shown that IE (minp IE (R (p) |µ)) = 0, which means that we

can rewrite (18) as

lim
N→∞

IEV N
(
sN
)

= IEV . (19)

From Remark 2.1 we know that IEV N
(
sN
)
≤ IEV for any N , so (19) means that an asymptotically

optimal policy, with our usual implementation decision, achieves the highest possible objective

value. The definition given in (18) is in line with the intuitive meaning of asymptotic optimality.

Theorem 3.2. The KG policy of Theorem 3.1 is asymptotically optimal in the sense of (19).

The proof of Theorem 3.2 is technical in nature, and can be found in the Appendix. The

work by Frazier & Powell (2009) provides sufficient conditions for the asymptotic optimality of a

KG-like learning policy in a general optimal learning setting. Our contribution is to verify that

these conditions are satisfied by the KG policy for the graph setting. In the Appendix, we list the

conditions in the context of the graph problem, then show that they are satisfied.

4 A Monte Carlo learning policy

In this section, we offer a different strategy for choosing edges. This approach views the paths

of the graph as alternatives in a ranking and selection problem. We explain how to model this

problem and solve it using the correlated KG algorithm by Frazier et al. (2009), assuming that we

can enumerate all the paths. We then discuss how to use Monte Carlo simulation to avoid having

to enumerate all the paths, instead generating a small subset of the set of all paths.

16

4.1 Ranking and selection on paths

Recall from Section 2.2 that V p denotes the true value of a path p. Suppose for now that we can

enumerate all the paths of the graph as p1, ..., pP . Let V paths = (V p1 , ..., V pP) denote the true

lengths of these paths. Let V paths,n (sn) = (V p1,n (sn) , ..., V pP ,n (sn)) represent the paths’ time-n

lengths. Also, let Ep be the set of edges contained in path p ∈ {p1, ..., pP }. Because a path is

characterized by its index, we will use p to refer to a path, as well as the path’s index in the set

{1, ..., P}.

From before, we know that IEnV p = V p,n (sn) for any path p. Because V p =
∑

(i,j)∈Ep µij , the

conditional covariance of V p and V p′ , given Fn, is expressed by

Σpaths,n
p,p′ (sn) =

∑
(i,j)∈Ep∩Ep′

(
σnij
)2 . (20)

As before, the individual edges of the graph are independent. However, two paths are not indepen-

dent if they have at least one edge in common, and the covariance of two path lengths is the sum

of the variances of the edges that the two paths have in common. Then, given Fn, we have

V paths ∼ N
(
V paths,n (sn) ,Σpaths,n (sn)

)
(21)

where Σpaths,n (sn) is defined by (20). Thus, we have a multivariate Gaussian prior distribution on

the vector V paths of true path lengths.

Now suppose that, instead of measuring one edge in each time step, we can measure a path

containing T edges, and use (4) and (5) to update our beliefs about every edge in that path. Because

our measurements are independent, the variance of such a measurement is σ2
εT . Our goal is to find

arg maxp V p, the path with the largest true value. This can be viewed a traditional ranking and

selection problem with correlated Gaussian priors. The alternatives of the problem are paths, our

beliefs are given by (21), and we choose a path to measure in every time step.

To solve this problem, we can apply the correlated knowledge gradient algorithm from Frazier

et al. (2009). The knowledge gradient for path p in this problem is

νKGC,np = IEnp
(
V n+1

(
sn+1

)
− V n (sn)

)
. (22)

For path p, we define a vector

σ̃KGC,n (p) =
Σpaths,nep√
σ2
εT + Σpaths,n

pp

(23)

17

to represent the reduction in the variance of our beliefs about all paths achieved by measuring path

p. Here ep is a vector with 1 at index p and zeros everywhere else. Then, (22) can be rewritten as

νKGC,np =
P−1∑
y=1

(
σ̃KGC,ny+1 (p)− σ̃KGC,ny (p)

)
f (− |cy|) (24)

where the paths have been sorted in order of increasing σ̃KGC,ny (p), f is as in Section 3, and the

numbers cy are such that y = arg maxp′
(
V paths,n
p′ (sn) + σ̃KGC,np′ (p) · z

)
for z ∈ [cy−1, cy), with ties

broken by the largest-index rule. Then, the correlated KG policy for choosing a path is given by

XKGC,n (sn) = arg max
p
νKGC,np . (25)

4.2 Using Monte Carlo sampling to generate a choice set

There are two major problems with using the correlated KG policy to find a path. First, we want to

measure individual edges, not paths. If we use (25) to find a path, we also need a rule for choosing

an edge from that path. Second, and more importantly, it is difficult to enumerate paths, and thus

we cannot use traditional ranking and selection methods on them. As an alternative to the KG

policy described in Section 3, we propose a Monte Carlo-based policy that generates a small set of

paths, and runs (25) on that set.

We run our Monte Carlo-based version of KG over the paths by first generating K sample

realizations of the random variable µ̄nij ∼ N
(
µnij ,

(
σnij

)2
)

for every edge (i, j). Let µ̄n (ωk) ={
µ̄nij (ωk) | (i, j) ∈ E

}
be the kth sample realization. We can find a path corresponding to the kth

realization by solving Bellman’s equation using µ̄n (ωk) as the edge values. Because some sample

realizations might yield the same best path, let K0 be the number of distinct paths obtained from

this procedure, and let `1, ..., `K0 represent those distinct paths. As before, we will use ` to refer to

a path as well as the path’s index in {1, ...,K0}.

Define the vector VMC =
(
V `1 , ..., V `K0

)
to represent the true lengths of the paths (using µij),

and similarly let VMC,n (sn) =
(
V `1,n (sn) , ..., V `K0

,n (sn)
)

represent the paths’ time-n lengths.

Then, given Fn, we have VMC ∼ N
(
VMC,n (sn) ,ΣMC,n (sn)

)
where

ΣMC,n
`,`′ (sn) =

∑
(i,j)∈E`∩E`′

(
σnij
)2 .

To put it in words, we first find a set of K0 different paths by solving K Monte Carlo shortest-path

problems. Given the information we know at time n, the mean length of a path is the sum of

18

the time-n lengths of the links in that path, and the covariance of two path lengths is the sum

of the variances of the edges that the two paths have in common. Then, given Fn, the vector

of path lengths has the multivariate Gaussian prior distribution given above. We can now apply

the correlated KG algorithm for ranking and selection to the K0 paths generated, and repeat the

computations (23), (24) and (25) using VMC,n and ΣMC,n instead of V P,n and ΣP,n. This procedure

returns a path `MC,n.

It remains to select an edge from this path. We propose the highest-variance rule

XMCKG,n (sn) = arg max
(i,j)∈E

`MC,n

σnij . (26)

In the special case where K0 = 1, we can simply follow (26) for the sole path generated, without

additional computation.

In Section 5, we use the MCKG policy as a competitive strategy to evaluate the performance

of the KG policy. However, we note that MCKG is also a new algorithm for this problem class. It

can be used in a situation where (14) is too expensive to compute, but we can still solve K path

problems for some K < |E|. The MCKG policy is equally suitable for cyclic and acyclic graphs.

5 Computational experiments

We examined the ways in which the performance of KG on a graph, relative to several other learning

policies, was affected by the physical structure of the graph, the size of the graph, the measurement

budget N , and the amount of information given by the prior. Our methods of graph generation

are discussed in Section 5.1. As stated at the end of Section 3, it does not matter whether we

are looking for the shortest or longest path, because the KG formula in (14) will be the same in

both cases. In our experiments, we minimized path length on graphs with a clearly defined source

node and destination node; for all of our learning policies, we used a freeware implementation of

Dijkstra’s algorithm to solve the shortest-path problems. In this setting, if π is a measurement

policy, and pπ is the path that seems to be the best at time N after having followed π, then the

opportunity cost of π is defined to be

Cπ = V pπ − V , (27)

the difference in the true length of the path pπ and the true length of the true best path. This

is the error we make by choosing the path that seems to be the best after running policy π. The

19

quantity V is found using (2), with the maximum replaced by a minimum. For policies π1 and π2,

Cπ2 − Cπ1 = V pπ2 − V pπ1 (28)

is the amount by which policy π1 outperforms policy π2. Positive values of (28) indicate that

π1 found a shorter (better) path, whereas negative values of (28) mean the opposite. For every

experiment in our study, we ran each measurement policy 104 times, starting from the same initial

data, thus obtaining 104 samples of (27) for each policy. The 104 sample paths were divided into

groups of 500 in order to obtain approximately normal samples of opportunity cost and the standard

errors of those averages. The standard error of the difference in (28) is the square root of the sum

of the squared standard errors of Cπ1 , Cπ2 .

Crucially, this performance metric requires us to know the true values µ for every graph we

consider. In order to test a learning policy, we first assume a truth, then evaluate the ability of

the policy to find that truth. For this reason, the starting data for our experiments were randomly

generated, including the physical graph structure itself. Because we minimized path length, we

generated µ and µ0 large enough to avoid negative edge values in our measurements.

For each graph, we generated two sets of numbers. In the heterogeneous-prior set, the prior

means µ0 were generated from a uniform distribution on [450, 550]. The prior variances were

generated from a uniform distribution on [95, 105]; the purpose of using such a narrow interval

was to ensure that all of them would be approximately equal, but any one would be equally likely

to be the largest. Then, for each edge (i, j), the true value µij was generated from a Gaussian

distribution with mean µ0
ij and variance

(
σ0
ij

)2
. This represents a situation in which our prior

beliefs are accurate on average, and give us a reasonably good idea about the true values. The

measurement noise σ2
ε was chosen to be 1002.

In the second set of initial parameters, referred to as the equal-prior set, we generated the prior

means µ0 from a uniform distribution on [495, 505], the purpose of the narrow interval again being

to break ties among the priors. The true means µ were generated from a uniform distribution on

[300, 700]. The prior variances and the measurement noise were obtained the same way as in the

heterogeneous-prior experiments. The true edge lengths fall into roughly the same range as in the

heterogeneous-prior experiments, but the priors now give us much less information about them.

Five policies were tested overall; we briefly describe their implementation.

Knowledge gradient on a graph (KG). This policy is defined by the decision rule (13), the exact

20

KG policy for acyclic graphs. The quantity V n (sn) is found by solving a shortest-path problem

using µn as the edge values. The quantity V n
ij (sn) is found in a similar fashion, with the value of

(i, j) modified as described in Section 3.

Pure exploitation (Exp). The pure exploitation policy consists of finding the path pn that solves

(8) with max replaced by min, then measuring the edge given by XExp,n (sn) = arg min(i,j)∈pn µ
n
ij .

Variance-exploitation (VExp). This policy is a slight modification of the pure exploitation policy.

It measures the edge given by XV Exp,n (sn) = arg max(i,j)∈pn σ
n
ij . Instead of simply choosing the

edge that looks the best on the path that looks the best, it chooses the edge that we are least

certain about on that same path.

Monte Carlo correlated KG (MCKG). The Monte Carlo policy is described in Section 4. The

decision rule for this policy is given by (26). The policy has one parameter K, the number of Monte

Carlo samples generated. In our experiments, we used K = 30. We found that smaller values of

K resulted in very few paths. On the other hand, larger values did not appreciably increase the

number K0 of distinct paths generated (which was typically in the single digits), while requiring

substantially more computational time.

Pure exploration (Explore). In every iteration, the pure exploration policy chooses an edge

uniformly at random and measures it.

5.1 Effect of graph structure on KG performance

We considered three general types of graph structure:

Layered graphs (Layer (L,B, c)). The layered graph is closest in form to the time-staged model

we developed in Section 2. It consists of a source node, a destination node, and L layers in between.

Each layer contains B nodes, and every node in every layer except for the last one is connected to

c randomly chosen nodes in the next layer. The source is connected to every node in the first layer,

and every node in the last layer is connected to the destination. The total number of nodes in the

graph is L ·B + 2, and the total number of edges is (L− 1) ·B · c+ 2 ·B. The edges are directed,

so every layered graph is acyclic.

Erdős-Renyi graphs (ER (D, p)). The Erdős-Renyi random graph model was introduced by

Gilbert (1959) and Erdős & Renyi (1959). A graph has D nodes, and any two nodes have a fixed

21

(a) Layer(3,4,2). (b) ER(12,0.3). (c) SF(3,9,2).

Figure 2: Examples of layered, Erdős-Renyi and scale-free graphs. The source and destination
nodes are marked by s and t.

probability p of being connected by an edge. Thus, the total number of edges in the graph varies,

but on average is equal to
(
D
2

)
· p. In our experiments, the source is the node with index 1 and the

sink is the node with index D.

Scale-free graphs (SF (S, I, c)). We use the scale-free graph model created by Barabási & Albert

(1999). We start with S nodes, and run I iterations. In every iteration, we add one new node and

connect it to c randomly chosen, previously existing nodes. The total number of nodes is equal to

S + I, and the total number of edges is equal to I · c. In our experiments, the source is the first

node added and the sink is the last node added.

Figure 2 gives examples of all three types. In the layered graph, any path from source to

destination contains the same number of edges. In the other graphs, several nodes have very high

degrees, so there tends to be at least one very short path from one node to another. Layered graphs

are acyclic, so (13) and (14) give the exact computation of (12). The other two types of graphs can

have cycles, so we use (13) as a close approximation of (12). Our edge values are high enough to

make the probability of negative-cost cycles negligible.

We generated 10 graphs of each type, each with approximately 30 nodes and 50 edges. The exact

types were Layer (4, 5, 3), ER (30, 0.1) and SF (5, 25, 2). The minimum, average, and maximum

values of the difference (28) across ten graphs of each type are given in Tables 1, 2 and 3 for both

the heterogeneous-prior and equal-prior experiments. The measurement budget was taken to be

N = 30, or approximately 60% of the number of edges.

The KG policy gives the best performance on the layered graphs, where it outperforms all other

policies on average. In the worst case, it can be outperformed by pure exploitation and variance-

22

Heterogeneous-prior Equal-prior
Min Average Max Min Average Max

KG-Exp -2.4410 151.5178 337.4421 162.2031 367.6961 673.0983
KG-VExp -3.7512 62.6977 104.9868 -15.9721 72.6030 130.8938
KG-MCKG 29.6875 60.8563 89.8636 -30.9532 54.7674 195.6884
KG-Explore 13.1494 93.1405 145.6467 33.5755 95.8332 167.7865

Table 1: Mean differences in opportunity cost across ten Layer (4, 5, 3) graphs.

Heterogeneous-prior Equal-prior
Min Average Max Min Average Max

KG-Exp -29.5931 14.7976 161.8455 -3.4380 29.8378 249.9321
KG-VExp -82.0065 -8.5772 2.9997 -43.8978 8.4519 79.0177
KG-MCKG -161.1705 -17.5574 8.9841 -51.1068 -3.7332 10.5969
KG-Explore -49.7891 4.9316 53.6483 0.0 24.0246 94.4013

Table 2: Mean differences in opportunity cost across ten ER (30, 0.1) graphs.

Heterogeneous-prior Equal-prior
Min Average Max Min Average Max

KG-Exp -4.9423 9.6666 53.1207 -36.3735 3.4179 80.8175
KG-VExp -5.0684 6.6864 66.7394 -21.9450 6.2264 85.9265
KG-MCKG -3.2274 0.2408 3.2134 -30.5455 -2.0340 12.9562
KG-Explore -5.2182 9.7683 82.3290 0.0 22.2583 88.9437

Table 3: Mean differences in opportunity cost across ten SF (5, 25, 2) graphs.

exploitation. However, even then, the difference is negligible, as the value of a typical path in one

of these layered graphs is around 2500. Furthermore, in the best case, the KG policy outperforms

the competition by a much larger margin.

For the other two types of graphs, KG performs competitively on average, but is outperformed

by every policy in the worst case, though the margin is very small for scale-free graphs. The Monte

Carlo policy performs especially well on both Erdős-Renyi and scale-free graphs, with a slight edge

over KG on average. In general, the competition is much tighter than for the layered graphs.

In Erdős-Renyi and scale-free graphs, there tends to be at least one path from source to desti-

nation that contains very few edges. When the values on the edges are similar in magnitude, this

means that a path with fewer edges is more likely to be the best. In such graphs, our consideration

is narrowed down to a small number of very short paths; even in the equal-prior case, the graph

topology provides a great deal of information. In fact, all five of our policies were able to find the

true best path in five out of ten of the Erdős-Renyi graphs. For this reason, Table 2 contains one

0.0 value, meaning that both policies under consideration achieved a zero opportunity cost.

23

Heterogeneous-prior Equal-prior
Layer ER SF Layer ER SF

KG-Exp 1.7887 0.3589 0.2364 2.0525 0.5892 0.3060
KG-VExp 1.9584 0.3447 0.2349 2.4267 0.5329 0.3710
KG-MCKG 1.7512 0.2479 0.1414 2.1261 0.2482 0.2857
KG-Explore 2.0358 0.3728 0.2652 2.3589 0.6671 0.4579

Table 4: Average standard errors of the differences in opportunity cost.

In a layered graph, however, every path contains the same number of edges. In this case,

small differences in our prior beliefs matter much more, and there are many more paths that could

potentially be the best. In this setting, exploitation-based methods quickly get stuck on an incorrect

path, while exploration is unable to discover enough useful information. The KG policy, on the

other hand, is more effective at finding a good path. Thus, the KG policy is a particularly good

choice for a time-staged graph model.

We also see that KG tends to perform better in the equal-prior setting for layered and Erdős-

Renyi graphs. On scale-free graphs, the performance of KG suffers in the worst case, but benefits

in the best case, with a slight drop in average-case performance. For the most part, we see that

KG can learn effectively when the prior gives relatively little information, especially in the layered

graph setting. The most effective policy after KG is MCKG, which has the most sophisticated

learning mechanism among the competition. This is also the only policy among the competition

which adapts well to the equal-prior setting, maintaining its performance relative to KG on average.

Table 4 shows the average standard errors of our estimates of (28) across each set of graphs. The

numbers are much smaller than most of the mean differences reported in Tables 1-3. As expected,

the standard error is larger for layered graphs, when we have more paths to choose from.

Finally, Table 5 reports the average number of distinct edges measured by each policy for each

set of graphs. Once again, we find that all policies except pure exploration examine fewer distinct

Heterogeneous-prior Equal-prior
Layer ER SF Layer ER SF

KG 20.5801 10.7087 7.6630 22.9280 8.9953 9.1416
Exp 3.4162 1.5208 2.2032 3.1745 2.1769 1.9843
VExp 10.7140 3.9947 3.9494 12.5684 3.6904 3.9536
MCKG 29.0706 5.8198 5.6184 29.5703 5.4339 5.4444
Explore 23.2830 21.5285 22.7159 23.2794 21.5349 22.7244

Table 5: Average number of distinct edges measured by each policy.

24

Heterogeneous-prior Equal-prior
Min Average Max Min Average Max

KG-Exp 212.1008 364.1344 513.2963 375.6234 554.0195 901.4031
KG-VExp -46.8154 101.1566 228.8304 31.5401 112.3906 167.6988
KG-MCKG 48.1381 113.5038 169.0582 42.5510 123.5008 298.5638
KG-Explore 119.0861 175.2994 296.3735 106.6856 185.7381 304.1708

Table 6: Mean differences in opportunity cost across ten Layer (6, 6, 3) graphs.

edges on Erdős-Renyi and scale-free graphs than on layered graphs. For instance, when the MCKG

policy takes Monte Carlo samples of the best path on a layered graph, the choice of the best

path can be decided by minor variations in the edge samples, and we will sample more distinct

paths. However, on a graph where there are one or two paths with very few edges, those few paths

will almost always come out on top in the Monte Carlo sampling, and MCKG will do much less

exploration than before.

5.2 Effect of graph size on KG performance

We examined the effect of graph size on the performance of the KG policy on the layered graphs

discussed in Section 5.1, the graph type that most resembles the time-staged model introduced in

Section 2. We generated a set of ten Layer (6, 6, 3) graphs. Thus, each graph in the set had 38

nodes and 102 edges, approximately twice as many as the graphs in Section 5.1. We also increased

the measurement budget to N = 60, again approximately 60% of the number of edges.

The performance of the KG policy on this set is summarized in Table 6. Every path in these

graphs contains two more edges than for the Layer (4, 5, 3) graphs, so the typical path length is

greater by about 1000, a 40% increase. However, the average values in Table 6 are about twice as

large as the analogous values in Table 1, indicating that the competing policies fall behind the KG

policy as the graph size increases.

These results are consistent with our observations in Section 5.1: KG is more effective in

situations where there are more paths to choose from. Essentially, KG is better-equipped to manage

large numbers of alternatives than the other learning policies.

25

(a) (b)

Figure 3: Opportunity cost and number of edges measured as functions of N .

5.3 Effect of measurement budget on KG performance

We tested our learning policies on one randomly chosen Layer (4, 5, 3) problem from Section 5.1

using measurement budgets of N = 5, 10, ..., 100. Figure 3(a) shows the way in which the opportu-

nity cost Cπ changes with the measurement budget for each of our learning policies. We see that

the KG policy consistently achieves the lowest opportunity cost. The only close competition comes

from MCKG, which lags behind the KG policy for N around 50, but catches up for large N .

Figure 3(b) tracks the number of distinct edges (out of 50 total) measured by each policy for

each measurement budget. As in Table 5, KG is exactly in the middle of the five policies. The

variants of pure exploitation do not explore enough. Pure exploration and MCKG explore more

edges than the KG policy, but do so less effectively. For N > 50, we see that MCKG explores more

slowly, until it almost exactly matches the KG policy for N = 100.

We can conclude that KG is effective for small measurement budgets. As long as we are allowed

fewer measurements than there are edges (the given graph has about 50 edges), KG uses those

measurements more efficiently than the competition. When the measurement budget is relatively

large, the Monte Carlo policy becomes a viable alternative. Together with our study of graph size

and structure, these results indicate that KG performs better relative to other policies when there

are many interesting paths to consider, but relatively few chances to measure them.

26

6 Conclusion

We have proposed a strategy for a new type of learning problem: the problem of finding the best

path in a graph with unknown edge weights, given finitely many chances to measure individual

edges. When the edge weights have normally distributed priors and normal sampling error with

known variance, the KG policy results in a simple decision rule which requires us to compute a

closed-form expression for every edge in the graph. Like analogous policies for offline ranking and

selection, the KG policy is myopically and asymptotically optimal. Our decision rule computes the

knowledge gradient exactly for acyclic graph problems, and approximates it for graphs with cycles.

In our experiments, we considered how the performance of the KG policy is affected by several

factors: the general type of graph structure, the size of the graph, the measurement budget, and the

amount of information conveyed by the prior. We found that the KG policy on average outperforms

several learning heuristics, including a Monte Carlo adaptation of a KG-type policy for ranking and

selection. The KG policy is particularly effective on problems where there are many possible paths

that could potentially be the best, but where the measurement budget is relatively small. This is

precisely the sort of problem where it is important to learn efficiently. We conclude that the KG

policy has strong potential for application in graph problems, where the physical structure makes

it difficult to use traditional ranking and selection methods.

The KG logic of choosing a measurement to maximize the expected improvement in our beliefs

about the optimal value of some objective function is very general. It is possible to envision problems

that are more general than the graph problem, just as the graph problem itself is more general than

the ranking and selection problem. The generality of the KG concept suggests that KG-like policies

can also be derived in learning problems with still more complex objective functions. For example,

it is possible to envision an objective where the sampling cost has an economic representation

other than just a finite measurement budget. The ranking and selection literature includes work

on economic analysis (see e.g. Chick & Gans (2009)), and the work on KG methods has also begun

to incorporate some of these ideas (see Chick & Frazier (2009)). The primary challenge in this case

would be the computation of the KG factor, which is problem-specific. Still, we believe that the

KG methodology can potentially open a new direction in the modeling and analysis of complex

optimal learning problems.

27

Acknowledgements

The authors are grateful to the Area Editor, Associate Editor, and three reviewers for their thorough

reading of this paper and their helpful comments. This research was supported in part by AFOSR

contract FA9550-08-1-0195 and ONR contract N00014-07-1-0150 through the Center for Dynamic

Data Analysis.

References

Barabási, A. & Albert, R. (1999), ‘Emergence of Scaling in Random Networks’, Science

286(5439), 509–512.

Bechhofer, R., Santner, T. & Goldsman, D. (1995), Design and Analysis of Experiments for Sta-

tistical Selection, Screening and Multiple Comparisons, J.Wiley & Sons, New York.

Bernardo, J. M. & Smith, A. F. M. (1994), Bayesian Theory, John Wiley and Sons, New York.

Branke, J., Chick, S. & Schmidt, C. (2007), ‘Selecting a selection procedure’, Management Science

53(12), 1916–1932.

Chick, S. & Gans, N. (2009), ‘Economic analysis of simulation selection options’, Management

Science 55(3), 421–437.

Chick, S. & Inoue, K. (2001a), ‘New procedures to select the best simulated system using common

random numbers’, Management Science 47(8), 1133–1149.

Chick, S. & Inoue, K. (2001b), ‘New two-stage and sequential procedures for selecting the best

simulated system’, Operations Research 49(5), 732–743.

Chick, S., Branke, J. & Schmidt, C. (2009), ‘Sequential Sampling to Myopically Maximize the

Expected Value of Information’, INFORMS J. on Computing (to appear).

Chick, S. E. & Frazier, P. I. (2009), The Conjunction Of The Knowledge Gradient And The

Economic Approach To Simulation Selection, in M. Rosetti, R. Hill, B. Johansson, A. Dunkin &

R. Ingalls, eds, ‘Proceedings of the 2009 Winter Simulation Conference’, pp. 528–539.

Dearden, R., Friedman, N. & Russell, S. (1998), Bayesian Q-learning, in ‘Proceedings of the Fif-

teenth National Conference on Artificial Intelligence (AAAI-98)’.

28

DeGroot, M. H. (1970), Optimal Statistical Decisions, John Wiley and Sons.

Duff, M. & Barto, A. (1996), Local bandit approximation for optimal learning problems, in ‘Ad-

vances in Neural Information Processing Systems’, Vol. 9, Cambridge, MA: MIT Press, pp. 1019–

1025.

Erdős, P. & Renyi, A. (1959), ‘On random graphs’, Publicationes Mathematicae 6, 290–297.

Fan, Y., Kalaba, R. & Moore, J. (2005), ‘Shortest Paths in Stochastic Networks with Correlated

Link Costs’, Computers and Mathematics with Applications 49, 1549–1564.

Frazier, P. I. & Powell, W. B. (2009), ‘Convergence to Global Optimality with Sequential Bayesian

Sampling Policies’, Submitted for publication.

Frazier, P. I., Powell, W. B. & Dayanik, S. (2008), ‘A knowledge gradient policy for sequential

information collection’, SIAM Journal on Control and Optimization 47(5), 2410–2439.

Frazier, P. I., Powell, W. B. & Dayanik, S. (2009), ‘The knowledge-gradient policy for correlated

normal rewards’, INFORMS J. on Computing 21(4), 599–613.

Frieze, A. & Grimmett, G. (1985), ‘The shortest-path problem for graphs with random arc-lengths’,

Discrete Applied Mathematics 10(1), 57–77.

Gelman, A., Carlin, J., Stern, H. & Rubin, D. (2004), Bayesian data analysis (2nd ed.), CRC Press.

Gilbert, E. (1959), ‘Random graphs’, Annals of Mathematical Statistics 30(4), 1141–1144.

Gittins, J. (1989), Multi-Armed Bandit Allocation Indices, John Wiley and Sons, New York.

Goldsman, D. (1983), Ranking and selection in simulation, in ‘Proceedings of the 15th Conference

on Winter Simulation, Volume 2’, IEEE Press Piscataway, NJ, USA, pp. 387–394.

Gupta, S. & Miescke, K. (1996), ‘Bayesian look ahead one-stage sampling allocations for selection

of the best population’, Journal of statistical planning and inference 54(2), 229–244.

Hoff, P. (2009), A First Course in Bayesian Statistical Methods, Springer Verlag.

Inoue, K., Chick, S. & Chen, C. (1999), ‘An empirical evaluation of several methods to select the

best system’, ACM Transactions on Modeling and Computer Simulation (TOMACS) 9(4), 381–

407.

29

Kim, S. & Nelson, B. (2006), Selecting the best system, in S. Henderson & B. Nelson, eds, ‘Hand-

books of Operations Research and Management Science, vol. 13: Simulation’, North-Holland

Publishing, Amsterdam, pp. 501–534.

Kim, S. & Nelson, B. (2007), Recent advances in ranking and selection, in ‘Proceedings of the 39th

conference on Winter simulation’, IEEE Press Piscataway, NJ, USA, pp. 162–172.

Kulkarni, V. (1986), ‘Shortest paths in networks with exponentially distributed arc lengths’, Net-

works 16, 255–274.

Law, A. & Kelton, W. (1991), Simulation Modeling and Analysis (2nd ed.), McGraw Hill, Inc.,

New York.

Lukacs, E. (1942), ‘A characterization of the normal distribution’, The Annals of Mathematical

Statistics 13(1), 91–93.

Peer, S. & Sharma, D. (2007), ‘Finding the shortest path in stochastic networks’, Computers and

Mathematics with Applications 53, 729–740.

Ryzhov, I. O. & Powell, W. B. (2009), The knowledge gradient algorithm for online subset se-

lection, in ‘Proceedings of the 2009 IEEE Symposium on Adaptive Dynamic Programming and

Reinforcement Learning, Nashville, TN’, pp. 137–144.

Ryzhov, I. O., Powell, W. B. & Frazier, P. I. (2009), ‘The knowledge gradient algorithm for a

general class of online learning problems’, Submitted for publication.

Schmeiser, B. (1982), ‘Batch size effects in the analysis of simulation output’, Operations Research

30(3), 556–568.

Snyder, T. & Steele, J. (1995), Probabilistic networks and network algorithms, in M. Ball, T. Mag-

nanti & C. Monma, eds, ‘Handbooks of Operations Research and Management Science, vol. 7:

Networks’, North-Holland Publishing, Amsterdam, pp. 401–424.

Watkins, C. & Dayan, P. (1992), ‘Q-learning’, Machine Learning 8(3), 279–292.

30

7 Appendix

7.1 Proof of Proposition 2.1

We use an inductive argument. Observe that V n
T (i; sn) = 0 = VT (i) for all i and all sn. Now

suppose that V n
t′ (i; sn) ≤ IEnVt′ (i) for all i, for all sn, and for all t′ > t. Then,

V n
t (i; sn) = max

j
µnij + V n

t+1 (j; sn)

≤ max
j
µnij + IEnVt+1 (j)

= max
j

IEn (µij + Vt+1 (j))

≤ IEn
(

max
j
µij + Vt+1 (j)

)
= IEnVt (i)

where the second line is due to the inductive hypothesis for t′ = t+ 1, the third line is true because

µnij is measurable with respect to Fn, and the fourth line follows by Jensen’s inequality. �

7.2 Proof of asymptotic optimality

As in Section 3.3, all expectations in this discussion are under the KG policy. For each n, we define

the quantities

hnij = min
p

IEnR (p)− IEnij

(
min
p

IEn+1R (p)
)

(29)

gnij = min
p

IEnR (p)− IEn
(

min
p

IEn (R (p) |µij)
)

(30)

gn = min
p

IEnR (p)− IEn
(

min
p

IEn (R (p) |µ)
)

. (31)

The quantity hnij represents the one-period decrease in risk obtained by measuring edge (i, j) at

time n. The quantity gnij represents the expected decrease in risk obtained by knowing µij exactly.

Finally, gn is the expected decrease in risk obtained by knowing all the true edge values µ exactly.

Theorem 7.1. (Theorem 4 from Frazier & Powell (2009)) Suppose that the following conditions

hold for all n:

1. If gnij = 0 for every (i, j) ∈ E, then gn = 0 also.

31

2. For any (i, j) ∈ E, if hnij = 0, then gnij = 0 also.

3. For any (i, j) ∈ E, both hnij and gnij are continuous in sn, that is, they are continuous at all

µn ∈ R|E| and σn ≥ 0, including the boundary points where at least one component of σn is

zero.

Then, the KG policy of Section 3 is asymptotically optimal in the sense of (19).

We now verify that the KG policy for learning on a graph satisfies these conditions. By substi-

tuting the definition of R (p) into (29), we see that

hnij = min
p

IEn (V − V p)− IEnij

(
min
p

IEn+1 (V − V p)
)

= IEnV −max
p
V p,n (sn)− IEnij

(
IEn+1V −max

p
V p,n+1

(
sn+1

))
= IEnV −max

p
V p,n (sn)− IEnV + IEnij max

p
V p,n+1

(
sn+1

)
= IEnij

(
V n+1

(
sn+1

)
− V n (sn)

)
= νKG,nij , (32)

so the one-period decrease in risk is the same as the one-period increase in value. Thus, the KG

policy we derived in section 3 maximizes the one-period decrease in risk, and therefore satisfies the

definition of a knowledge gradient policy given in Frazier & Powell (2009).

Repeating the same computations as in (32) for gnij , we find that

gnij = IEn
(

max
p

IEn (V p |µij)− V n (sn)
)

. (33)

This difference is very similar to the difference in (12). When we compute IEnV n+1
(
sn+1

)
in (12),

we are computing the expected length of the best path, given that our beliefs about one edge (i, j)

will change from µnij to µn+1
ij , over the time-n distribution of µn+1

ij . In (33), we do the same thing,

given that our beliefs about (i, j) will change from µnij to µij . At time n, µij ∼ N
(
µnij ,

(
σnij

)2
)

.

Therefore, to compute (33), we simply repeat the calculations of Section 3, using σnij instead of σ̃nij .

It follows that

gnij = σnij · f

(
−
V n (sn)− V n

ij (sn)
σnij

)
(34)

where V n
ij (sn) and f are defined the same way as in Section 3.

32

Finally, we can repeat the computations from (32) once more for gn and find that

gn = IEnV − V n (sn) .

Thus, gn is precisely the difference between the right and left sides of (10).

Proposition 7.1. gnij = 0 if and only if σnij = 0. Also, hnij = 0 if and only if σnij = 0.

Proof: Suppose that σnij = 0. Because µij ∼ N
(
µnij ,

(
σnij

)2
)

given Fn, it follows that µij = µnij

almost surely at time n. Therefore, the right-hand side of (33) is zero.

However, if σnij > 0, we repeat the calculations from Section 3 and arrive at (34). The right-

hand side of (34) will be strictly positive, because f has no zeros on the real line. Observe that

f ′ (z) = Φ (z) > 0, so if f had any zeros, there would have to be some region of the real line on

which f was strictly negative. However, f is known to be positive, e.g. from Frazier et al. (2008),

so f can have no zeros. It follows that gnij > 0 as well. Thus, gnij = 0 if and only if σnij = 0.

The same reasoning applies to hnij . If σnij = 0, then σ̃nij = 0, which means that µij = µnij almost

surely at time n, and the right-hand side of (12) is zero. If σnij > 0, then σ̃nij > 0 and we apply

the reasoning from Section 3 to arrive at (14). However, because f has no zeros, it follows that

νKG,nij > 0 and hnij > 0. Consequently, hnij = 0 if and only if σnij = 0. �

Proposition 7.2. Let sn be any knowledge state, that is, take any µn ∈ R|E| and any σn ≥ 0.

Suppose that gnij = 0 for all (i, j) ∈ E. Then, gn = 0 also.

Proof: If gnij = 0 for all (i, j), it follows that σnij = 0 for all (i, j) by Proposition 7.1. This means

that, at time n, µij = µnij almost surely for every (i, j), which means that IEnV = V n (sn). �

Proposition 7.3. For any knowledge state sn with µn ∈ R|E| and σn ≥ 0, if hnij = 0, then gnij = 0.

Proof: Using Proposition 7.1 twice, if hnij = 0, then σnij = 0, but this also means that gnij = 0. �

Proposition 7.4. For every (i, j) ∈ E, gnij and hnij are continuous in sn, that is, they are continuous

at all µn ∈ R|E| and σn ≥ 0, including the boundary points where at least one component of σn is

zero.

Proof: If σnij > 0, then hnij and gnij are given by (14) and (34). The function f (z) is continuous

in z. Furthermore, V n (sn) and V n
ij (sn) are continuous in µn, because the time-n length of a fixed

33

path is continuous in µn (being the sum of some components of µn), therefore a maximum over a

finite set of fixed paths is also continuous in µn. Thus, hnij and gnij are continuous at all µn and all

σn with σnij > 0.

If we take σnij → 0, then we also have σ̃nij → 0. Because f is increasing, it follows that

σ̃nij · f

(
−
V n (sn)− V n

ij (sn)
σ̃nij

)
≤ σ̃nij · f (0) . (35)

As σ̃nij → 0, the right-hand side of (35) vanishes, which means that hnij → 0 also. The same holds

for gnij , if we replace σ̃nij with σnij in (35).

Thus, the limit of (14) and (34) as σnij → 0 is zero. We know from Proposition 7.1 that

hnij = gnij = 0 if σnij = 0, so hnij and gnij are also continuous at all µn and all σn with σnij = 0. �

These results constitute the proof of Theorem 3.2. The three conditions of Theorem 7.1 are

verified by Proposition 7.2, Proposition 7.3 and Proposition 7.4, respectively.

34

