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Abstract In the controlled ovary hyperstimulation (COH) cycle of the in vitro fertilization-embryo transfer (IVF-

ET) therapy, the clinicians observe the patients’ responses to gonadotropin dosages through closely monitoring

their physiological states, to balance the trade-off between pregnancy rate and ovarian hyperstimulation syndrome

(OHSS) risk. In this paper, we model the clinical practice in the COH treatment cycle as a stochastic dynamic

program, to capture the dynamic decision process and to account for each individual patient’s stochastic responses

to gonadotropin administration. We discretize the problem into a Markov decision process and solve it using a

slightly modified backward dynamic programming algorithm. We then evaluate the policies using simulation

and explore the impact of patient misclassification. More specifically, we focus on patients with polycystic ovaries

syndrome (PCOS) or potential, that is, the patients that tend to be more sensitive to gonadotropin administration.

Keywords Controlled ovarian hyperstimulation · Pregnancy rate · OHSS risk · Dosage decisions · Markov

decision process

1 Introduction

Since the birth of the first “test-tube” baby, Louise Joy Brown, in 1978 in Oldham, England, assisted repro-

ductive technology (ART) has been widely applied to help sterile couples to have their own children. In vitro

fertilization-embryo transfer (IVF-ET) is the most commonly used fertility treatment, accounting for more

than 99% of all ART therapies. IVF combines the oocyte and sperm in the laboratory environment, and ET

transfers the embryo into the body of the mother. According to the “2005 Assisted Reproductive Technol-

ogy (ART) Report” from the Division of Reproductive Health of Centers for Disease Control and Prevention

(http://www.cdc.gov/ART/ART2005/), in 2005, 134,260 ART cycles were performed at 422 fertility clinics in

the United States, resulting in 38,910 live births (deliveries of one or more living infants) and 52,041 infants.

About 20,000 ART cycles were performed in China in 2004.

However, it is difficult to duplicate Louise’s success, because the oocyte was produced in a natural menstrual cycle

of her mother, without any stimulation to the ovaries. In a natural menstrual cycle, a woman usually produces
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1 INTRODUCTION

only one oocyte (in rare cases two oocytes but no more than that; some women can not produce even a single

oocyte in a menstrual cycle). If the oocyte is of poor quality or can not be used at all, the chance of pregnancy

is very low, which is more likely to happen among infertile couples. Given multiple oocytes, the probability that

at least one oocyte is combined with a sperm increases. Therefore, the prevailing clinical practice for IVF-ET is

to stimulate the ovaries with medicines to induce multiple oocytes, in order to greatly increase the pregnancy

rate (see, for example, Barbieri and Hornstein 1999). The process of inducing multiple oocytes by medicines is

called controlled ovarian hyperstimulation (COH) and the medicines administered are exogenous gonadotropins

(or gonadotrophins). We depict the whole IVF-ET procedure with gonadotropin stimulation in Figure 1.
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Fig. 1: A Typical IVF-ET Procedure

While the retrieval of multiple oocytes via gonadotropin stimulation in COH helps to increase the pregnancy rate,

the existence of an iatrogenic disease called ovarian hyperstimulation syndrome (OHSS) is a constant concern in

IVF-ET practices. OHSS is a serious and potentially life-threatening complication (Fauser et al. 1999). Although

the true pathology is still not fully understood, it is widely accepted by the clinicians that OHSS is triggered by

the administration of exogenous gonadotropins. As claimed by Delvigne and Rozenberg (2003), “Today, it is the

loss of control over hyperstimulation which constitutes the OHSS.”

IVF-ET therapy is highly rewarding in that it provides hope for infertile couples. Yet it is expensive and ac-

companied with risks. Not only does the OHSS risk jeopardize women’s health, but also the treatment failures

have psychological impacts on the patients. The COH cycle is an integral part of the IVF-ET therapy and af-

fects its success. It is a stochastic, dynamic, and complicated process. Clinicians make treatment decisions (daily

gonadotropin dosages, etc.) to balance the chance of pregnancy and the OHSS risk.

At the beginning of the therapy, clinicians usually (implicitly) classify patients into responsiveness/sensitivity

classes (to exogenous gonadotropins) based on their medical characteristics, such as age, body mass index (BMI,

defined as body weight (kg)/stature2 (m2)), previous IVF-ET experiences, etc. In the COH cycle, clinicians

need to consider each patient’s individual physiological responsiveness to exogenous gonadotropin by closely

monitoring her key physiological states. Clinicians base their dynamic treatment decisions (gonadotropin dosages)

on guidelines from the clinical literature and (mainly) on their clinical experiences.

In the clinical literature, researchers study factors on the pregnancy rate and/or the OHSS risk using statistical

analysis of clinical records. These studies provide useful guidance on clinical practices. However, most of them

focus on a single medical characteristic or physiological state, yet controversial conclusions exist. Furthermore,

there is a lack of research on integrating the statistical observations/conclusions into decision support tools to

assist clinicians to actively respond to the stochastic and dynamic progress of the COH cycle and adjust dosage

decisions to achieve more effective control over the treatment cycle and its outcomes. Such data-driven clinical

decision support tools can also help to avoid subjective decisions in experience-based practices.

In this study, we propose a data-driven clinical decision support framework based on a Markov decision process

(MDP) model supported by the clinical literature, expert opinions, and statistical analysis on real world clinical

records, Next, we provide more details on the COH cycle and the associated OHSS risk in Section 2. We then

2



2 BACKGROUND

formulate a stochastic dynamic programming model in section 3 and describe our solution approach in section 4.

In section 5, we provide our computational results. We conclude the paper in section 6.

2 Background

In this section, we provide some background on the problem in this study. In the discussion that follows, we will

use “woman,” “patient,” and “human body” interchangeably, all of which refer to the woman undergoing the

IVF-ET therapy.

Controlled Ovarian Hyperstimulation (COH)

Before the oocytes’ maturity, they are called follicles. In a natural menstrual cycle, the endogenous gonadotropins

(gonadotropins secreted by the women) surpass the threshold of a single winner follicle, but would not reach the

thresholds of all others (called recruitment). Consequently, only the winner follicle develops into an oocyte while

the growth of others is hindered (called atresia).

In COH, the clinicians first suppress the endogenous gonadotropins with medicines such as gonadotropin releasing

hormone analogue (GnRH a) or gonadotropin releasing hormone antagonist (GnRH A), in order to inhibit the

recruitment process, and then supplement the human body with exogenous gonadotropins to stimulate multiple

follicles to grow into oocytes. The COH cycle helps the woman undergoing IVF-ET to obtain multiple oocytes

to increase the chance of pregnancy. It has been an integral part of the IVF-ET therapy since the late 1970s and

early 1980s.

The common exogenous gonadotropins adopted by the clinicians are human menopausal hormone (hMG), follicle

stimulating hormone (FSH), or the combination of the two. Gonadotropin dosages are measured in ampoule. In

practice, gonadotropins are administered daily.

When the diameters of the two largest follicles reach 18 mm, another type of gonadotropin, human chorionic

gonadotropin (hCG), is administered to induce the final maturity of the follicles into oocytes, which marks the

end of the COH cycle. The COH length varies with cycles, usually in 6-20 days (Martin et al. 2006).

Ovarian Hyperstimulation Syndrome (OHSS)

OHSS, the iatrogenic complication associated with the COH cycle, can be mild, intermediate, severe, or even

life-threatening. According to Klemetti et al. (2005), the incidence of severe OHSS has been reported to vary

from 0.7% to 1.7%. The incidence of severe OHSS reported by Delvigne and Rozenberg (2002) ranges from 0.5%

to 5 %. OHSS can occur a few days after hCG administration (early OHSS) or later in pregnancy (late OHSS).

The symptoms of severe OHSS include rapid weight gain, tense ascites, hemodynamic instability (orthostatic

hypotension, tachycardia), respiratory difficulty (tachypnea), progressive oliguria, and laboratory abnormalities.

Polycystic Ovary Syndrome (PCOS)

There exists a disease called polycystic ovary syndrome (PCOS), characterized by 1) the presence of 12 or more

follicles with 2-9 mm in diameter in a single ovary, or 2) increased ovarian volume (> 10 mL), according to

Norman et al. (2007). PCOS patients are more sensitive to gonadotropin administration than normal patients

(Balasch et al. 2001, Aboulghar and Mansour 2003, Tarlatzis 2002). As a result, under gonadotropin stimulation,

women with PCOS are exposed to higher OHSS risk. In the literature survey by Delvigne and Rozenberg (2002),

a study reports that 63% of severe OHSS patients show ultrasonically diagnosed PCOS, while another study

of 128 Belgian OHSS patients shows that 37% of them suffer from PCOS compared with 15% PCOS incidence

among 256 non-OHSS patients. PCOS patients are the target group of this study.

The Tradeoff between the Pregnancy Rate and OHSS Risk

The prevailing clinical practice in IVF-ET today is to stimulate the growth of multiple follicles into oocytes to

increase the chance of pregnancy, but at the same time, the clinicians need to be cautious of the OHSS risk.

On one hand, if a woman undergoing COH fails to produce multiple oocytes with satisfactory quality, the chance

of pregnancy is greatly reduced and perhaps another therapy cycle is needed. Yet, the therapy is expensive. The

3



3 MODEL FORMULATION

cost is around $7,500 per cycle in the United States (Schmittlein and Morrison 2003) and $2,500 per cycle in

China (He 2004). On the other hand, if the woman suffers from (early) severe OHSS, she has to postpone the

embryo transfer (ET) via embryo cryopreservation (to store the embryo to transfer until the woman recover from

OHSS), which incurs extra cost. Moreover, the embryo quality may deteriorate when thawed. A late severe OHSS

may seriously jeopardize the woman’s health, and is even life-threatening. In addition, the woman must bear the

mental pressure resulted from the failure.

As in the article “What is the most relevant standard of success in assisted reproduction? The next step to

improve outcomes of IVF: Consider the whole treatment” (Heijnen et al. 2004), we should define “the most

informative end-point of success in IVF to be the term singleton birth rate per started IVF treatment in the

overall context of patient discomfort, complications and costs.”

In the COH cycle, the clinicians monitor the patient’s individual responses based on her physiological states, such

as the number and sizes of follicles, Estradiol (E2) level, ovarian volumes, etc., and adjust dosages accordingly. On

the hCG day, the clinicians want to keep the physiological states within a certain range to balance the tradeoff

between the pregnancy rate and OHSS risk. However, humans tend to use myopic, experience-based policies and

sometimes are influenced by the outcomes of the most recent clinical practices. As a result, the clinical decisions

can therefore become subjective and inconsistent.

Our research employs a stochastic dynamic programming model to capture the stochastic and dynamic features

of the COH cycle. Based on clinical guidance and records, it aims to provide a more rigorous and data-driven

formalism for achieving the same goals of the clinicians.

In recent years, there have been an increasing number of operations researchers trying to apply OR methodologies

to assist and improve clinical practices. For example, Alagoz et al. (2004) uses a Markov decision process (MDP)

model to decide on an optimal timing of living-donor liver transplantation. They extend their work to include

cadaveric livers (Alagoz et al. 2007a,b).

To the best of the authors’ knowledge, this is the first research from the OR perspective on clinical decisions in

IVF-ET therapy. Furthermore, this paper is unique in a sense that it incorporates dynamic clinical decisions taking

into account the patients’ individual stochastic responses to dosages, depicted in a correlated multi-dimensional

state space. The only OR paper related to IVF-ET is by Schmittlein and Morrison (2003), where the authors use

probability models to examine the two alternative payment options to infertile couples marketed by many clinics

in the United States and conclude that the “money-back-guarantee program” is “too good to be true.”

3 Model Formulation

We define day 0 as the day when a patient starts exogenous gonadotropin administration in the COH cycle.

Initially, clinicians make a judgment on the patient’s responsiveness class, and therefore the starting gonadotropin

dosage, based on her medical characteristics, such as age, BMI, number of antral follicles (follicles with 2-5 mm

in diameter), ovary diameter, previous COH experiences, etc. The starting dosage is an indicator of the clinicians’

initial classification of the patient’s likely responsiveness/sensitivity to gonadotropin dosages.

When the diameters of the largest two follicles reach 18mm, the COH cycle ends and hCG (a gonadotropin

to induce the maturity of the follicles into oocytes) is administered. The “planning horizon” (COH cycle), T ,

typically lasts for 6-20 days.

In the course of the COH cycle, decisions on gonadotropin dosages are made dynamically (daily) based on each

patient’s physiological responses, which are dynamic and uncertain in nature. Furthermore, the growths of a

patient’s physiological states are correlated. The clinicians try to control these physiological states so that they

fall into or are close to a target range on the hCG day, defined as a trade-off between the pregnancy rate and

OHSS risk, based on clinical experiences and literature. Next, we formulate a stochastic dynamic program to

model such a problem.
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3 MODEL FORMULATION 3.1 A Stochastic Dynamic Programming Model

3.1 A Stochastic Dynamic Programming Model

We adopt the notation commonly used in the dynamic programming society as follows:

St = The state of the process on day t, t = 0, ..., T ;

xt = The decision made on day t, t = 0, ..., T ;

Wt = Exogenous information arrives between days t− 1 and t, t = 1, ..., T .

The whole process can be represented as

ht = (S0, x0, W1, S1, x1, W2, S2, x2, ..., xt−1, Wt, St).

3.1.1 The States

We define the states based on the patient’s physiological states, resulting in a three-dimensional continuous state

space.

Et = Estradiol level (E2, pg/ml) on day t, Et ∈ [5.0, 17000.0] (ln Et ∈ [1.6, 9.7]);

Ot = Mean diameter (mm) of the larger ovary on day t, Ot ∈ [20.0, 65.0];

Ft = Diameter (mm) of the second largest follicle on day t, Ft ∈ [3.0, 19.5];

St = (Et, Ot, Ft), t = 0, ..., T .

E2 level. Growing follicles secrete E2. E2 level is widely accepted as a good predictor for both the pregnancy rate

and OHSS risk in the clinical literature (for example, Mathur et al. 2000; Thomas et al. 2002).

Ovarian volume. Follicles develop in the ovaries. Oyesanya et al. (1995) shows that women with moderate or

severe OHSS have significantly larger mean ovarian volume on the hCG day than normal women. In practice,

clinicians record ovary diameters (and use them to approximate ovary volumes). The clinicians who collaborate

with us monitor the mean ovary diameter (average of the longest diameter and shortest diameter of the largest

ovary plane) in the COH cycle and try to control it to be under 50 mm on the hCG day. To reduce the dimension

of the problem, we use the mean ovary diameter of the larger ovary as a state variable. However, the model can

be easily extended to include the diameters of both ovaries without affecting the structure of the problem.

The number and sizes of follicles. The number and sizes of follicles are indicators of physiological responses of the

human body to gonadotropin stimulation. The retrieval of many oocytes (mature follicles) implies high OHSS

risk. Al-Shawaf and Grudzinskas (2003) point out that, when more than 20 follicles are detected by ultrasound,

actions should be taken to reduce OHSS risk. Another study by Asch et al. (1991) suggests that more than 30

oocytes bring 28% severe OHSS risk. On the other hand, the retrieval of too few oocytes lowers the chance of

pregnancy.

We monitor the diameter of the second largest follicle because when it reaches 18 mm, the COH cycle ends. It

is a continuous variable. Note that the diameter of the second largest follicle may not be exactly 18 mm on the

hCG day. We also assume that the growth rate of a larger follicle is no slower than that of a smaller follicle,

which is normally true except for rare cases.

It is impractical to obtain complete data on the number and sizes of all follicles in the whole COH cycle. In

practice, clinicians only record the diameters of several largest follicles. In this model, we use Et, Ot and Ft to

implicitly represent the number and sizes of follicles. This makes sense as follicles secrete E2 and they are hold

in ovaries. Ft, together with Et and Ot, somehow represents the growths of other follicles.

Et, Ot and Ft are continuous variables. As we will discuss in Section 3.1.5, the ovary diameter and E2 level on

the hCG day are the key physiological predictors of the pregnancy rate and OHSS risk.

3.1.2 The Decision Variables

The decision variable, decision functions, and the feasible regions are defined as following.
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Xπ(St) = The decision function (or policy) which determines the gonadotropin dosage on day

t under policy π, given current state St, i.e. xt = Xπ(St), t = 1, ..., T − 1;

Π = The set of possible policies. Each element π ∈ Π corresponds to a different policy.

{Xπ(St)}π∈Π is the family of decision functions;

Xt = The set of allowable decisions given the information available on day t, t = 1, ..., T−1.

The daily dosage decision, xt, t = 1, ..., T − 1, can be up to six (6) ampoules for poor responders (Hofmann

et al. 1989). However, 2 and 3 ampoules are commonly adopted in clinics. (Hoomans et al. 1999, Wikland et al.

(2001)). In the literature survey by Rombouts (2007), only for the poor-responsive patients does 4 ampoules

initialized. Another study concerning the gonadotropin dosage for PCOS patients always suggests dosage fewer

than 4 ampoules (Wely et al. 2006). In the clinic under study, the clinicians mainly use 2 and 3 ampoules and

very occasionally use 4 ampoules to PCOS patients. Hence in this exploratory research, we define Xt = {2, 3},
t = 1, ..., T − 1. However, it can be easily extended to include a wider decision set.

3.1.3 The Exogenous Information Process

Patients belonging to the same responsiveness class may still respond to the gonadotropin dosage differently. The

exact physiological response of a patient to a particular dosage is unknown to the clinicians when the dosage

decision needs to be made. It becomes known only after the dosage is administered. The clinicians base their

dosage decisions on clinical experiences and guidelines. They implicitly “optimize” the expected responses of

patients in the responsiveness class. The stochastic responses of each class of patients can be described and

governed by an underlying statistical model.

In our model, we explicitly consider each individual patient’s stochastic physiological responses. We use the

exogenous information process to model the stochastic part of the transition function and define

Wt+1 = The exogenous information (the patient’s physiological response to dosage xt) becom-

ing known between day t (when the dosage xt is administered) and day t + 1 (when

the dosage decision xt+1 needs to be made).

3.1.4 The Transition Function

We decompose the daily change (transition) of the states into two parts: the deterministic part and the stochastic

part. The deterministic part describes how the gonadotropin dosage affects the expected growth of follicles, ovaries,

and the E2 level. It is patient class specific. The stochastic part captures individual responses of the patients

in each class. Furthermore, we can interpret the deterministic growth of the states as an direct impact of the

dosage decision xt, while the stochastic part as an exogenous random information. Hence, we find it convenient

to borrow the notation of post-decision states as suggested by Powell (2007), as follows.

We model the transition function using post-decision states, and define:

Sx
t = SM,x(St, xt),

St+1 = SM,W (Sx
t , Wt+1).

The superscript “M” stands for “model”, superscript “x” captures the impact of the decision, and “W” captures

the impact of the exogenous information process.

The Deterministic Transition

We define the deterministic (post-decision) transition function using

Sx
t = (Ex

t , Ox
t , Fx

t ), (1)

where

Ex
t = Et + ∆e

t (St, xt),

Ox
t = Ot + ∆o

t (St, xt),

Fx
t = Ft + ∆f

t (St, xt).
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and

∆e
t (St, xt) = The deterministic (expected) change (growth rate) of the logarithm of E2 level between

days t and t + 1, given state St and decision xt;

∆o
t (St, xt) = The deterministic (expected) change (growth rate) of the mean ovary diameter be-

tween days t and t + 1, given state St and decision xt;

∆f
t (St, xt) = The deterministic (expected) change (growth rate) of the diameter of the second

largest follicle between days t and t + 1, given state St and decision xt.

The Stochastic Transition

The stochastic/exogenous part of the transition function is modeled as

Wt+1 = (εe
t+1(St), ε

o
t+1(St), ε

f
t+1(St)), (2)

where

εe
t+1(St) = The stochastic change of logarithm of the E2 level between days t and t + 1, given

state St;

εo
t+1(St) = The stochastic change of the mean ovary diameter between days t and t + 1, given

state St;

εf
t+1(St) = The stochastic change of the diameter of the second largest follicle between days t

and t + 1, given state St.

Note that εe
t+1(St), εo

t+1(St), and εf
t+1(St) are correlated, which can be described using a multi-variate distribution

function F . In this study, we use the trivariate truncated normal distribution, based on clinical records and expert

opinions.

Combining (1) and (2), we have the complete transition function as

St+1 = (Et+1, Ot+1, Ft+1),

= Sx
t + Wt+1, (3)

where,

Et+1 = Ex
t + εe

t+1(St),

Ot+1 = Ox
t + εo

t+1(St),

Ft+1 = Fx
t + εf

t+1(St).

In Chapter 9 of the book “Office-Based Infertility Practice” (Seifer and Collins 2002), it’s stated that “follicular

growth was noted to be linear during the ultrasonic examination.” The exponentially growing pattern of E2 level

has been noticed and reported by the clinical society since decades ago (Wilson et al. 1982, Pittaway and Wentz

1983).

Consistent with the clinical literature, we observe from the clinical data that the follicles and ovaries grow ap-

proximately linearly while the E2 level increases approximately exponentially under constant dosage. To illustrate,

we plot the growths of the six largest follicles (three in the right ovary, marked with RH-1, RH-2, and RH-3, and

three in the left ovary, marked with LH-1, LH-2, and LH-3), the two ovaries, and the E2 level (in log display) of

a PCOS patient under constant dosage of 2 ampoules in Figure 2.

In the COH cycle, the expected growth rates of the follicles, ovaries, and the logarithm of E2 level are ap-

proximately linear, i.e. the growth rates do not rely on the current state. Therefore, in the current model, we

approximately replace ∆e
t+1(St, xt), ∆o

t+1(St, xt), ∆f
t+1(St, xt) with ∆e(xt), ∆o(xt), and ∆f (xt), respectively.

This helps us to simplify the transition function. We list the expected growth rates in the transition function in

Table 1.

3.1.5 The Cost Function

In the IVF-ET therapy, the completion of the COH cycle is not the end of the story. In Figure 1, the oocyte

retrieval, in vitro fertilization, and embryo transfer procedures all affect the pregnancy rate and OHSS risk.
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Fig. 2: A Sample Evolution of Follicles, Ovaries and E2 Level in the COH Cycle

Table 1: Expected Growth Rates in the Transition Function

Patient class
Dosage ln(E2) Ovary Follicle
ampoule ln(pg/ml)/day mm/day mm/day

Normally-R
2 0.28 1.50 1.15
3 0.45 1.87 1.22

High-R
2 0.46 1.90 1.25
3 0.57 2.53 1.36

Consequently, in the COH cycle, clinicians monitor and control the growths of the patient’s physiological states

so that they arrive at the target range of states on the hCG day. The target range is defined by incorporating

the trade-off between the pregnancy rate and OHSS risk.

We define the cost function as

Ct(St, xt) = 0, for t = 1, ..., T − 1,

and the cost function value CT (ST ) is evaluated on the hCG day.

In the definition of the cost function on the hCG day, CT (ST ), we do not consider FT , because the diameter

of the second largest follicle on the hCG day has little correlation with the pregnancy rate and OHSS risk. We

define the target range of states in the ET -OT plane, as a balance of the pregnancy rate and OHSS risk, based on

the clinical literature and expert opinions. We then penalize the deviations from the target range. The resulting

cost function, CT (ST ) = f(ET , OT ), is an additive piecewise linear convex function, for ST ∈ ST , where ST is

the feasible region defined as ST = {(ET , OT , FT )|ET ∈ [1200.0, 17000.0], OT ∈ [35.0, 65.0], FT ∈ [18.0, 19.5]}.

The E2 level on the hCG day is a widely accepted predictive factor for both OHSS risk and pregnancy rate. Chen

et al. (2003) qualitatively describes the predictive role of E2 level as “high E2 levels appeared to be associated with

improved treatment outcome, extremely high levels were predictive of severe ovarian hyperstimulation syndrome

(OHSS).”

However, the quantitatively optimal range of E2 level on the hCG day is still in debate in the clinical literature.

Al-Shawaf and Grudzinskas (2003) believe that when the E2 level reaches 3500 pg/ml, the gonadotropins should

be withheld (a therapy called coasting) to reduce the OHSS risk. A more conservative strategy is to withhold

gonadotropins when the E2 level reaches 3000 pg/ml (Aboulghar and Mansour 2003). On the other hand, there

are researchers arguing that coasting reduces the pregnancy rate. Peña et al. (2002) points out that relatively

high E2 level on the hCG day actually predicts high embryo transfer rate. Schmidt et al. (2004) reports that
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3 MODEL FORMULATION 3.2 More about Classifications: Does the Distribution Count?

when E2 level on the hCG day is less than 5000 pg/ml, the pregnancy increases along with the E2 level; when

the E2 level is larger than 5000 pg/ml, the pregnancy rate drops. They conclude that excessive high E2 level on

the hCG day is detrimental to the pregnancy rate and the ”threshold estradiol level at which the pregnancy rate

is reduced is 5000 pg/ml.” Asch et al. (1991) points out that when the E2 level on the hCG day is lower than

3500 pg/ml, the chance of pregnancy is significantly lower than that with the E2 level higher than 3500 pg/ml.

They also show that, if the E2 level rises to higher than 6000 pg/ml, the severe OHSS risk increases to 38%.

Clinicians cooperating with us suggest that the target (satisfactory) range of the E2 level on the hCG day be

between 3500-6000 pg/ml.

That the ovaries of patients suffering from OHSS are enlarged is commonly recognized (see Chapter 19 in “Ovula-

tion Induction” by Tarlatzis 2002, Chapter 19 in “Manual of Ovulation Induction” by Allahbadia 2005). Oyesanya

et al. (1995) shows that women with moderate or severe OHSS have significantly higher mean ovarian volume on

the hCG day than normal women. The clinicians who collaborate with us try to control the mean ovary diameter

on the hCG day to be under 50 mm.

Consequently, we define the target range as ET ∈ [3500.0, 6000.0] pg/ml and OT ∈ [45.0, 50.0] mm, within which

we have CT (ST ) = 0. The piecewise linear convex cost function on the hCG day is defined as

CT (ST ) = f(ET , OT ) = (a + b× ET ) + (c + d×OT ). (4)

The parameters in (4) are listed in Tables 2 and 3, and the cost function, CT (ST ), is depicted in Figure 3.

The shape of the cost function is based on the (qualitative) discussions with the clinicians. We performed an

exploratory sensitivity analysis in Section 5.4.

Table 2: Parameters (in pieces) in the Cost Function: E2 Level

E2 (pg/ml) 1200 - 3500 3500 - 6000 6000 - 8000 8000 - 10000 10000 - 17000
a 1750.0 0.0 - 600.0 - 1400.0 - 4400.0
b - 0.5 0.0 0.10 0.20 0.50

Table 3: Parameters (in pieces) in the Cost Function: Ovary

Ovary (mm) 35 - 40 40 - 45 45 - 50 50 - 55 55 - 60 60 - 65
c 5900.0 2700.0 0.0 -3000.0 -9600.0 -20400.0
d -140.0 -60.0 0.0 60.0 180.0 360.0

3.1.6 The objective function

In the end, we wish to choose the best decision function (policy) to minimize the expected cost over the finite

horizon (the COH cycle), as defined in (5).

min
π

E

T∑

t=0

Ct(St, X
π(St)). (5)

3.2 More about Classifications: Does the Distribution Count?

The patients undergoing COH are usually classified into poor, normal and high responders (Papageorgiou et al.

2002, Cai et al. 2005). As discussed in Section 2, PCOS patients are more sensitive to the gonadotropin stimulation

and are therefore rarely poor responders.

At the beginning of the COH cycle (before the observations of a patient’s responsiveness), clinicians classify the

patient into a likely responsiveness/sensitivity class and make decisions on the starting dosage, see Rombouts

(2007). While the clinicians adjust the dosages based on observing the patient’s physiological responses in the
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Fig. 3: Cost Function on the hCG Day

COH cycle, such an initial “impression” on the patient’s responsiveness will inevitably have an impact on the

clinicians’ dosage decisions.

When the clinicians identify a patient’s responsiveness class before the COH cycle, typical predictive factors

involve her medical characteristics such as age, BMI, previous IVF-ET experience(s), number of antral follicles

(follicles with diameter 2-5 mm), and ovary diameters, the last two of which are related to the diagnosis of PCOS

(Martin et al. 2006, Chang et al. 1998, Ku et al. 2006). In this study, all patients are with PCOS or PCOS

potential, and all but one patient have no previous IVF-ET experiences. So age and BMI are the major medical

characteristics in the initial decision of starting dosage.

In the clinic under study, a rule of thumb for patient responsiveness classification is that PCOS patients younger

than 30 with BMI less than 23 or 24 are likely to be high-responsive, and therefore usually start with a dosage

of 2 ampoules. On the other hand, older and heavier PCOS patients tend to be normally-responsive and usually

start with a dosage of 3 ampoules. In other words, starting dosages reveal clinicians’ (implicit) classification of

the patient’s responsiveness class.

However, an exploratory statistical analysis on the clinical records shows no significant correlations between

starting dosages and the age-BMI pairs. Moreover, we observe obvious inconsistencies between the practices

(decisions on starting dosage) and the claimed rule of thumb. Figure 4 illustrates the inconsistencies: quite a few

young and lean patients are administered with starting dosage 3, and several old and heavy patients start with

10



4 THE SOLUTION APPROACH

dosage 2. Our discussions with a clinician indicate that the inconsistencies can be attributed to the subjective

decisions based on their clinical experience (for example, the clinicians may tend to make more conservative

decisions as a result of a recent treatment failure).
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Fig. 4: Clustering Outcomes vs. Actual Classification

Each individual patient’s responses to dosage are uncertain, which can be (partially) revealed by her physio-

logical states. The key to a successful COH cycle is for the clinicians to identify the patient’s likely responsive-

ness/sensitivity to dosage administration, and to monitor the COH cycle closely and adjust the dosages in an

appropriate and timely manner. In clinical practices, an implicit assumption is that the clinicians are able to

identify the patient’s expected responses (responsiveness class) correctly and to make dosage decisions taking

the patient’s likely responsiveness into account. In the language of mathematical modeling, we assume that the

underlying statistical model (distribution) governing the stochastic responses of each patient responsiveness class

is known, and the clinicians make dosage decisions to optimize the expected trade-off between the pregnancy rate

and OHSS risk.

Clinicians may, of course, may make an incorrect classification base on an incorrect distribution? We explore the

impact of misclassification through computational experiments in Section 5.3.

4 The Solution Approach

If we discretize the state space, the problem described in Section 3 can be modeled as a finite horizon Markov de-

cision process (MDP). This requires discretizing the set of outcomes, allowing us to compute a one-step transition

matrix P(St+1|St, xt).

The length of the treatment cycle is not deterministic, since it depends on the diameter of the second largest

follicle, Ft. In addition, the cost function Ct(St, xt) = 0 until the hCG day, at which point we incur the terminal

cost CT (ST ) as defined in Section 3.1.5.

We use the (slightly modified) backward dynamic programming algorithm (Algorithm 4.1) to solve the discretized

problem of (5), by solving Bellman’s equations (6).

Vt(St) = min
xt∈Xt


Ct(St, xt) +

∑

s′∈S
P(St+1 = s′|St, xt)Vt+1(s

′)


 , t = 0, ..., T − 1, (6)

where Vt(St) is the value of being in state St = (Et, Ot, Ft), and S is the discretized state space defined within

Et ∈ [5.0, 17000.0] (ln Et ∈ [1.6, 9.7]), Ot ∈ [20.0, 65.0], and Ft ∈ [3.0, 19.5], t = 0, ..., T . The value of being in

state St on the hCG day is VT (ST ) = CT (ST ).

11



5 COMPUTATIONAL RESULTS

The transition (growth) matrix P(St+1|St, xt) is discretized from the trivariate truncated normal distribution,

given the decision xt. Note that given St, the bounded state transition (growth) can eliminate infeasible states

and reduce the need to search the entire state space for St+1.

Algorithm 4.1 is a (slightly modified) backward dynamic programming algorithm. For each day t from 20 to

0, we loop over all possible states St (Et, Ot and Ft), and compute the value of being in this state, Vt(St).

If St is an end state, i.e. St with Ft ≥ 18mm, we directly obtain the value of being in St, Vt(St), from the

cost function (4) defined in Section 3.1.5. Otherwise, we evaluate each possible decision xt and choose the one

that results in the smallest state value, Vt(St). Vt(St) is the smallest expected value in the next period, i.e.,∑
s′∈S P(St+1 = s′|St, xt)Vt+1(s

′), where the state transition from state St to St+1 is governed by the transition

function (1), (2), and (3) defined in Section 3.1.4.

Step 0. Initialization:
T = 20.
Initialize the terminal cost VT (ST ) = CT (ST ).
Set t = T − 1.

Step 1. Do:
If (Ft < 18mm)

Vt(St) = minxt

(∑
s′∈S P(St+1 = s′|St, xt)Vt+1(s′)

)
, for all St ∈ S.

Else if (t >= 6)
Vt(St) = CT (St),
where the cost function CT (s) is defined in Section 3.1.5.

Step 2. If t > 0, decrement t, go to Step 1. Else, Stop.

Algorithm 4.1: The Backward Dynamic Programming Algorithm

The solution of (6) results in a policy/look-up table, π, under a given discretization level. Of course, the com-

putational demands of the algorithm rise quickly when states are discretized in sufficiently fine increments. To

determine the appropriate level of discretization, we compare the results using simulation.

While we use a discretized transition matrix to obtain the optimal policy under a given discretization level, in the

simulation, we first simulate the state transition using the continuous transition function (trivariate truncated

normal distribution), then round to the closest state, St, for the optimal (dosage) decision, xπ
t (St), and therefore

obtain the value of being in that state under policy π, V π
t (St). It is important to note that we step forward

in time using the continuous state. Aggregation can produce a behavior known as aliasing which can destroy

the Markov property (see Powell 2007, section 7.1.4), but we only use the discretized state for the purpose of

evaluating the value function.

To generate random variables from the trivariate truncated normal distribution, we adopt the normal-to-anything

Transformation (NORTA) approach (Biller and Nelson 2005). The NORTA multivariate random variable gener-

ation procedures are provided in Appendix A. Interested readers are referred to Biller and Nelson (2003, 2005);

Cario and Nelson (1996, 1998) for details.

5 Computational Results

We perform three sets of experiments. First, we solve the Bellman equations (6) with different levels of dis-

cretization using the backward dynamic programming algorithm (Algorithm 4.1), and evaluate the resulting

policies/look-up table with simulation. Second, we study the impact of misclassifications. Third, we perform an

exploratory sensitivity analysis on the parameter settings of the cost function. Both the dynamic programming

algorithm and the simulation procedure are programmed in C++. The computational experiments are performed

on an Intel Core 2 Quad Q6600 CPU @ 2.40GHz and 3.25GB RAM.
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5 COMPUTATIONAL RESULTS 5.1 Discretization

5.1 Discretization

In this research, we study two classes of PCOS patients: high-responsive patients and normally-responsive patients.

Each patient class has its own transition function. In the experiments, we use the same cost function, CT (ST ),

for both patient classes. We experiment on seven discretization levels for each patient class. In Table 4, we list the

number of (discretized) cells and the solution time required to obtain the optimal policy for each discretization

level. Note that we only list the solution time of the high-responsive patient class, as the differences in solution

time required for the high responsive and normally-responsive patient classes are relatively small as compared

with the differences in solution time across discretization levels. We observe that the finest discretization (level

0) takes about 22 hours (78,493 seconds) to solve for the optimal policy of each patient class.

In the simulation procedure to evaluate the resulting policy, we sample 400 initial physiological states (S0). At

each initial state, we simulate 50 COH cycles, to represent the distribution of patients in the same responsiveness

class with the same initial state. We use the common random stream in the simulation of all discretization levels.

We first calculate the mean and standard deviation of the cost on the hCG day of the 50 COH cycles at each

initial state, and then calculate the mean and standard deviation of the cost on the hCG day of the 400 initial

states, the latter of which are also listed in Table 4.

Table 4: Comparison among Discretization Levels

Discretization Level 0 1 2 3 4 5 6

Number of cells 86020 71944 57868 30636 20646 13392 6912
Solution time (seconds) 78493 54262 28998 9481 4524 1593 326

CT (ST ) (high), mean 201.2 202.5 204.8 256.1 228.6 236.8 359.8
CT (ST ) (high), stdev 175.5 173.3 174.9 169.7 174.8 179.4 240.1

CT (ST ) (normal), mean 133.9 134.1 155.9 147.6 142.3 151.1 147.3
CT (ST ) (normal), stdev 196.1 197.8 192.3 188.5 192.3 194.6 192.7

In this dynamic program, we have an ending state (St with Ft ≥ 18mm) instead of an ending period. Consequently,

the planning horizon is uncertain and can be as large as 20, which significantly increases the complexity of the

program. After experiments on the seven discretization levels, we observe that, from level 1 to level 0, the cost

function values change a little (< 1%), while the solution times increase from 15 hours to 22 hours for one patient

class. We decided to take level 1 as the level of discretization in the remaining experiments.

5.2 Optimal Dosage Policy

The solution to (5), i.e., the optimal dosage policy, is in the form of a lookup table where the (dosage) decision is

a function of all three dimensions of the state variables. Due to the complexity of the problem structure (three-

dimensional correlated states, uncertain cycle length, non-monotonic cost function on the hCG day, etc.), there

are no provable monotonic control limits in the optimal dosage policy.

To provide an intuitive illustration of the optimal policy, we plot some sample dosage profiles of the normally

and high responsive patients on different days in Figures 5 and 6. In these figures, the x-axis is ovary diameter

(mm) and the y-axis is E2 level (pg/ml). The star ‘*’ represents dosage of 3 ampoules and the circle ‘◦’ represents

dosage of 2 ampoules.

Note that in our model, we enlarged the feasible region to include every theoretically possible state and the

resulting dosage policies (look-up tables) are complete. In the real world, the actual feasible/possible state space

is much smaller. For example, it is almost impossible to have a large ovary while having a very low E2 level, or

to have a high E2 level while having a very small ovary. Moreover, the areas around the origin (very small ovary

and very low E2) on these ovary-E2 plots are almost impossible too, for follicle diameters Ft = 10, 11, 12 on day

5. As a result, the areas close to the X (ovary diameter) and Y (E2 level) axes in Figures 5 and 6 are very unlikely

in reality.
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(b) Follicle Diameter = 11 mm
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Fig. 5: Optimal Dosage Policy: Normally Responsive Patients, Day 5
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(b) Follicle Diameter = 11 mm
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Fig. 6: Optimal Dosage Policy: High Responsive Patients, Day 5

Comparing Figures 5 and 6, we observe that the areas of dosage 3 in the dosage profile for normally-responsive

patients are larger than that for high responsive patients. In both patient classes, as the 2nd largest follicle

becomes larger (closer to the ending state Ft ≥ 18mm), the areas of dosage 3 become larger.

Next, we evaluate the benefits of using an optimal policy.

5.3 Impact of Patient Classification

Next, we explore the answer to the question we posed in Section 3.2: what if the clinicians make a wrong

classification and base their decisions on a wrong distribution?

In the following set of experiments, we explore the impact of patient misclassification. That is, we “pretend

to treat” normally-responsive patients as high-responsive ones. It means that we will make dosage decisions

using the policy/look-up table for high-responsive patients, while the physiological states of the patients indeed

evolve under the transition functions of normally-responsive patients. Similarly, we may misclassify and “treat”

high-responsive patients as normally-responsive ones.

Under discretization level 1, we sample 400 initial physiological states and 50 COH cycles at each initial state,

for each patient class. We then “treat” these patients with the right and misclassified policies. Figure 7 and 9

show the distributions (histograms) of the mean ovary diameters and E2 levels of the 400 initial physiological

states on the hCG day of both patient classes. The distributions of patients on the hCG day on the E2-ovary

plane are plotted in Figures 8 and 10, respectively. In Figures 8 and 10, the inner rectangle shows the target

range (E2 level: [3500, 6000] pg/ml, ovary: [45, 50] mm), while the outer rectangle shows the ranges next to the

target range in Tables 2 and 3.

When a high-responsive patient is treated as normally-responsive, clinicians underestimate her responsiveness to

gonadotropin administration and therefore tend to administer more than the necessary dosages (over-hyperstimulation).

The computational results show that misclassified high-responsive (high-as-normal) patients tend to have higher

E2 levels (39.8% on average) and larger ovaries (3.0% on average) over the correctly-classified (high-as-high)
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Fig. 7: High-Responsive Patient Class
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Fig. 8: E2-Ovary Plot on the hCG Day: High Responsive

patients. Moreover, in Figure 7, we observe that the E2 level distribution of the correctly-classified patients is

more balanced around the target range ([3500, 6000] pg/ml), while that of the misclassified patients is more

skewed toward the higher side. While the ovaries of the high-responsive patients tend to be large, those of the

misclassified patients are more skewed toward the larger side. Compared with the correctly classified patients,

32.0% fewer of the misclassified patients have ovaries in the target range ([45, 50], mm), 28.5% fewer of the

misclassified patients have E2 level in the target range ([3500, 6000] pg/ml).

In the E2-ovary plot on the hCG day in Figure 8, we observe that the misclassified high-responsive patients

are more clustered outside the upper-right corner of the target range. 42.3% of the correctly-classified patients

fall into the target range, as compared with 9.3% of the misclassified patients. Consequently, the misclassified

high-responsive patients may be exposed to higher OHSS risk at the end of the COH cycle.

On the other hand, when a normally-responsive patient is misclassified as a high-responsive one, clinicians overes-

timate her responsiveness to gonadotropin administration and therefore tend to administer less than the necessary

dosages (under-hyperstimulation).

The computational results show that the misclassified normally-responsive (normal-as-high) patients tend to have

lower E2 levels (25.1% on average), but similar (slightly smaller) ovary diameters (0.7% smaller on average), as

compared with the correctly-classified (normal-as-normal) patients. In Figure 9, we observe that the distribution

of E2 levels of the misclassified patients is more skewed toward the lower side. Consequently, compared with

correctly-classified patients, 6.5% fewer of the misclassified patients have ovary diameters in the target range

([45, 50] mm), and 44.5% fewer of the misclassified patients have E2 levels in the target range ([3500, 6000]

pg/ml). Moreover, 72.3% misclassified patients having E2 levels below 3500 pg/ml. The significantly lower E2

levels make the treatment results of the misclassified patients unsatisfactory.
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Fig. 9: Normally-Responsive Patient Class
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Fig. 10: E2-Ovary Plot on the hCG Day: Normally Responsive

In the E2-ovary plot on the hCG day in Figure 10, we observe no significant difference on the ovary diameter distri-

bution between the correctly-classified and misclassified normally responsive patients. However, the misclassified

patients tend to cluster outside the lower E2 limit of the target range. 59.5% of the correctly-classified patients

fall into the target range, as compared with 21.5% of the misclassified patients. As a result, the misclassified

normally-responsive patients are more likely to suffer from low pregnancy rates.

5.4 Sensitivity analysis

The shape of the cost function (4) (as depicted in Figure 3) follows clinical intuition and can be easily understood

and justified qualitatively. However, the quantitative parameter settings have not been studied in the literature

or analyzed in practice, as this research is the first attempt to use a stochastic dynamic programming model to

formulate and evaluate the patient physiological responses to dosage and the dosage decisions in the COH cycle.

In this subsection, we perform an exploratory experiment on the sensitivity analysis of the parameter settings in

(4), while keeping its qualitative shape.

In this experiment, we reduce the ovary cost coefficients by 1/3 but keep the E2 level cost coefficients in (4). Note

that by doing so, we change the relative cost (penalty) of ovary and E2 level, if the ovary or E2 level does not

fall within the target range on the hCG day. We ran the experiment (first solve for the optimal policy and then

evaluate by simulation of 400 initial physiological states) under discretization level 1. In Table 5, we compare

the means (with standard deviations in parentheses) of the cost, ovary diameter and E2 level on the hCG day

between the original cost function (OCF) and the modified cost function (MCF).

16



6 CONCLUSION

Table 5: Comparison between Original and Modified Cost Function

Patient Cost Ovary (mm) E2 level (pg/ml)
class Treatment OCF MCF OCF MCF OCF MCF

High-R
High 202.5 (173.3) 183.2 (164.3) 49.8 (1.8) 49.8 (1.8) 4862.9 (1207.7) 4866.1 (1197.2)

Normal 295.8 (187.8) 261.4 (177.6) 51.3 (1.8) 51.4 (1.9) 5728.0 (1427.0) 5747.8 (1441.0)

Normally-R
Normal 134.1 (197.8) 126.4 (197.9) 48.0 (2.0) 48.0 (2.1) 4272.7 ( 882.3) 4280.7 ( 890.4)
High 266.3 (187.6) 257.7 (185.4) 47.7 (2.0) 47.7 (2.0) 3201.5 ( 521.9) 3203.3 ( 519.3)

In Table 5, we observe significant changes on the cost on the hCG day between OCF and MCF, due to the

changes of cost parameter settings. However, the changes in the cost parameter settings in (4) have a statistically

negligible impact on the ovary and E2 level on the hCG day. This result is encouraging in that it shows that the

cost function is robust with respect to parameter settings while we keep the qualitative shape.

6 Conclusion

It is widely acknowledged that experience-based subjective decision making still prevails in today’s clinical prac-

tices around the world. The “influence of the most recent case” decisions and the inconsistencies in clinical

decisions across clinics, within the same clinic, or even by the same clinician, are not unusual. To improve pa-

tient safety and treatment effectiveness for a better health care delivery, evidence-based clinical practice and

data-driven clinical decision making have been proposed (for example, Reid et al. 2005) and widely discussed

recently, by both the engineering and medical societies. However, the complexity of a clinical treatment, coupled

with complex human responses to the treatment, demands a good understanding of the (usually dynamic and

stochastic) treatment process and the selection of appropriate modeling and algorithmic tools.

In the controlled ovary hyperstimulation (COH) cycle, the clinicians observe the patients’ responses to the go-

nadotropin dosages by closely monitoring their physiological states. They then dynamically adjust dosages when

necessary. Each patient’s responses to dosages are uncertain when the clinicians make the dosage decisions. How-

ever, the responses of a responsiveness class of patients can be described by an underlying statistical model,

based on the clinical literature, the historical clinical records, and the accumulated clinical experiences. With

these statistical models in hand, we should be able to develop an optimal policy to assist the clinicians on their

dosage decisions.

In this paper, we model the clinical practices in the COH treatment cycle as a stochastic dynamic program, to

capture the dynamic decision process and to account for each individual patient’s stochastic responses to dosage

administration. We discretize the problem into a Markov decision process and solve it using a slightly modified

backward dynamic programming algorithm. We then evaluate the policies using simulation, explore the impact

of patient misclassification, and performed an exploratory sensitivity analysis on the cost function parameters.

The contribution of this research lies in that it is the first attempt to formulate the evolution of physiological

responses under dosage administration in the COH cycle using a stochastic dynamic program. This model is

used to find the optimal dosage control to achieve better and more consistent treatment outcomes. The results

of this exploratory research can serve as a foundation for continuing research for a modeling/solution framework

that combines statistical data analysis (data mining, learning), optimization, dynamic control, and simulation

techniques to assist evidence-based, data-driven clinical decision making, which often needs to incorporate the

dynamic and stochastic nature of a clinical treatment process. It provides a more rigorous clinical decision support

to clinicians to hedge against possible myopic, subjective human decisions.
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A PROCEDURES OF RANDOM VARIABLE GENERATION FROM MULTIVARIATE TRUNCATED

NORMAL DISTRIBUTION

Appendix

A Procedures of Random Variable Generation from Multivariate Truncated Normal Distribution

Objective: To the generate random variable from multivariate (N) truncated normal distribution.

Precondition: We know 1) The marginal distribution of each univariate truncated normal random variable, Xi, i = 1, ..., N .
That is, Xi ∼ TruncNormal (µi, σi, LBi, UBi), where µi and σi are the mean and standard deviation of the original (un-
truncated) normal distribution. 2) The correlation matrix Σ, with correlation between i and j denoted by σij = corr(i, j),
i 6= j.

The NORTA multivariate random variable generation procedure is described in Algorithm A.1.

Step 0 Preparation (Only needs to calculate once).
Step 0.1 For each pair of Xi & Xj , i, j ∈ {1, ..., N}, i 6= j, solve for ρij using the procedure (Steps 1, 2, 3. Note that

σij corresponds to ρX .) on pages 343-344 of Banks et al. (2004).
Step 0.2 Use ρij , i, j ∈ {1, ..., N}, i 6= j, to construct the correlation matrix M.

Step 0.3 Cholesky Decomposition: M = BB>.
Step 1 Generate I.I.D. RV’s from standard normal distribution, Z′i, i = 1, ..., N .
Step 2 Transform to tri-variate normal, Z = BZ′.
Step 3 For each Zi, i ∈ {1, ..., N}, use the Trunc Normal (Zi : µi, σi, LBi, UBi) procedure to get Xi. Repeat Steps 1 to 3.

Algorithm A.1: NORTA Multivariate Random Variable Generation

Let Φ(·) ≡ standard normal cdf, and Φ−1(·) ≡ standard normal inverse cdf. The Trunc Normal procedure is described in
Algorithm A.2.

Prerequisite These are calculated ONLY ONCE outside this procedure for each univariate truncated normal variable, Xi.
Prereq. 1 ZL = (LB − µ)/σ, ZU = (UB − µ)/σ.
Prereq. 2 uL = Φ(ZL) and uU = Φ(ZU ).

Step 1 u′ = uL + (uU − uL) · u.
Step 2 z′ = Φ−1(u′).
Step 3 return X = µ + σz′.

Algorithm A.2: The Trunc Normal (u : µ, σ, LB, UB) Procedure
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